On well-posedness for the Benjamin-Ono equation

被引:70
作者
Burq, Nicolas
Planchon, Fabrice
机构
[1] Univ Paris 13, Inst Galilee, CNRS, UMR 7539,Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
[2] CNRS, UMR 8628, Dept Math, F-91405 Orsay, France
[3] Univ Paris 11, Inst Univ France, F-91405 Orsay, France
关键词
D O I
10.1007/s00208-007-0150-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and uniqueness of solutions for the Benjamin-Ono equation with data in H-s (R), s > 1/4. Moreover, the flow is holder continuous in weaker topologies.
引用
收藏
页码:497 / 542
页数:46
相关论文
共 26 条
[1]   Model equations for waves in stratified fluids [J].
Albert, JP ;
Bona, JL ;
Saut, JC .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1961) :1233-1260
[2]   INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1967, 29 :559-&
[3]  
Bergh J., 1976, INTERPOLATION SPACES
[4]   Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) :569-605
[5]   Smoothing and dispersive estimates for ID Schrodinger equations with BV coefficients and applications [J].
Burq, N ;
Planchon, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (01) :265-298
[6]   Bilinear estimates and applications to 2D NLS [J].
Colliander, JE ;
Delort, JM ;
Kenig, CE ;
Staffilani, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (08) :3307-3325
[7]   SMOOTHING PROPERTIES AND EXISTENCE OF SOLUTIONS FOR THE GENERALIZED BENJAMIN-ONO-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) :150-212
[8]  
Hayashi N., 1994, DIFFER INTEGRAL EQU, V7, P453
[9]  
HERR S, 2005, ARXIVMATHAP0509218
[10]  
IONESCU AD, 2006, ARXIVMATH0605158V1