Variations on the Baer-Suzuki theorem

被引:10
|
作者
Guralnick, Robert [1 ]
Malle, Gunter [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] TU Kaiserslautern, FB Math, D-67653 Kaiserslautern, Germany
基金
美国国家科学基金会;
关键词
Baer-Suzuki theorem; Conjugacy classes; Commutators; CONJUGACY CLASSES; CHARACTER TABLES; FINITE-GROUPS; SUBGROUPS;
D O I
10.1007/s00209-014-1399-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Baer-Suzuki theorem says that if is a prime, is a -element in a finite group and is a -group for all , then the normal closure of in is a -group. We consider the case where is replaced by for some other -element . While the analog of Baer-Suzuki is not true, we show that some variation is. We also answer a closely related question of Pavel Shumyatsky on commutators of conjugacy classes of -elements.
引用
收藏
页码:981 / 1006
页数:26
相关论文
共 16 条
  • [1] Weakly subnormal subgroups and variations of the Baer-Suzuki theorem
    Guralnick, Robert M.
    Tong-Viet, Hung P.
    Tracey, Gareth
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (01):
  • [2] Baer-Suzuki theorem for the π-radical
    Yang, Nanying
    Revin, Danila O.
    Vdovin, Evgeny P.
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (01) : 173 - 207
  • [3] Variations on the Baer–Suzuki theorem
    Robert Guralnick
    Gunter Malle
    Mathematische Zeitschrift, 2015, 279 : 981 - 1006
  • [4] A SOLVABLE VERSION OF THE BAER-SUZUKI THEOREM
    Guest, Simon
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (11) : 5909 - 5946
  • [5] Baer-Suzuki theorem for the solvable radical of a finite group
    Gordeev, Nikolai
    Grunewald, Fritz
    Kunyavskii, Boris
    Plotkin, Eugene
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) : 217 - 222
  • [6] The Baer-Suzuki Theorem for Groups of 3-Exponent 1
    Tang, J.
    Yang, N.
    Mamontov, A. S.
    ALGEBRA AND LOGIC, 2023, 62 (03) : 266 - 271
  • [7] On the sharp Baer-Suzuki theorem for the π-radical of a finite group
    Yang, N.
    Wu, Zh.
    Revin, D. O.
    Vdovin, E. P.
    SBORNIK MATHEMATICS, 2023, 214 (01) : 108 - 147
  • [8] An analog of the Baer-Suzuki theorem for infinite groups
    Mamontov, AS
    SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (02) : 327 - 330
  • [9] ON BAER-SUZUKI π-THEOREMS
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (02) : 340 - 347
  • [10] On Baer-Suzuki π-theorems
    Revin D.O.
    Siberian Mathematical Journal, 2011, 52 (2) : 340 - 347