On the class groups of certain imaginary cyclic fields of 2-power degree

被引:0
|
作者
Ichimura, Humio [1 ]
Sumida-Takahashi, Hiroki [2 ]
机构
[1] Ibaraki Univ, Fac Sci, Bunkyo 2-1-1, Mito, Ibaraki 3108512, Japan
[2] Tokushima Univ, Fac Sci & Technol, 2-1 Minami Josanjima Cho, Tokushima 7708506, Japan
关键词
ideal class group; 2-part; imaginary cyclic field; CLASS NUMBER; DIVISIBILITY;
D O I
10.2969/jmsj/86438643
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime number and let 2(e+1) be the highest power of 2 dividing p - 1. For 0 <= n <= e, let k(n) be the real cyclic field of conductor p and degree 2(n). For a certain imaginary quadratic field L-0, we put L-n = L(0)k(n). For 0 <= n <= e - 1, let F-n be the imaginary quadratic subextension of the imaginary (2,2)-extension Ln+1/k(n), with F-n not equal L-n. We study the Galois module structure of the 2-part of the ideal class group of the imaginary cyclic field F-n. This generalizes a classical result of Rdei and Reichardt for the case n = 0.
引用
收藏
页码:945 / 972
页数:28
相关论文
共 41 条