ideal class group;
2-part;
imaginary cyclic field;
CLASS NUMBER;
DIVISIBILITY;
D O I:
10.2969/jmsj/86438643
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let p be an odd prime number and let 2(e+1) be the highest power of 2 dividing p - 1. For 0 <= n <= e, let k(n) be the real cyclic field of conductor p and degree 2(n). For a certain imaginary quadratic field L-0, we put L-n = L(0)k(n). For 0 <= n <= e - 1, let F-n be the imaginary quadratic subextension of the imaginary (2,2)-extension Ln+1/k(n), with F-n not equal L-n. We study the Galois module structure of the 2-part of the ideal class group of the imaginary cyclic field F-n. This generalizes a classical result of Rdei and Reichardt for the case n = 0.
机构:
Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Dept Math, Fes, MoroccoSidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Dept Math, Fes, Morocco
Chems-Eddin, Mohamed Mahmoud
El Fadil, Lhoussain
论文数: 0引用数: 0
h-index: 0
机构:
Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Dept Math, Fes, MoroccoSidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Dept Math, Fes, Morocco