A closed graph theorem for hyperbolic iterated function systems

被引:0
作者
Mundey, Alexander [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
关键词
Iterated function system; closed graph theorem; hyperbolic; fractal; morphism; conjugacy;
D O I
10.4171/JFG/116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we introduce the notion of a morphism between two hyperbolic iterated function systems. We prove that the graph of such a morphism is the attractor of an iterated function system, giving a closed graph theorem, and demonstrate how it can be used to approach the topological conjugacy problem for iterated function systems.
引用
收藏
页码:325 / 336
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 2001, Analysis on Fractals
[2]  
[Anonymous], 2006, Superfractals
[3]  
Barnsley M. F., 2014, RECENT PROGR GEN TOP, VIII, P69
[4]   Transformations between Self-Referential Sets [J].
Barnsley, Michael F. .
AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (04) :291-304
[5]   SUB-SELF-SIMILAR SETS [J].
FALCONER, KJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) :3121-3129
[6]  
Hata M., 1985, Japan J. Appl. Math., V2, P381
[7]  
Hu S, 1997, HDB MULTIVALUED ANAL
[8]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[9]  
Kameyama A, 2000, J MATH KYOTO U, V40, P601
[10]  
Kameyama A., 1993, JAPAN J IND APPL MAT, V10, P85, DOI DOI 10.1007/BF03167204