Solitons in nonlinear optics

被引:66
作者
Maimistov, A. I. [1 ,2 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[2] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
optical solitons; inverse scattering transform; ultrashort pulses; dispersion; modulation; multiwave interaction; Raman scattering; optical fibres; Kerr nonlinearity; SELF-INDUCED TRANSPARENCY; STIMULATED RAMAN-SCATTERING; MAXWELL-BLOCH EQUATIONS; SHORT ELECTROMAGNETIC PULSES; INITIAL-VALUE-PROBLEM; SCHRODINGER-EQUATION; PERIODIC-WAVES; SIMULTANEOUS PROPAGATION; FEMTOSECOND SOLITONS; RESONANT INTERACTION;
D O I
10.1070/QE2010v040n09ABEH014396
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The classic examples of optical phenomena resulting in the appearance of solitons are self-focusing, self-induced transparency,and parametric three-wave interaction. To date, the list of the fields of nonlinear optics and models where solitons play an important role has significantly expanded. Now long-lived or stable solitary waves are called solitons, including, for example, dissipative, gap, parametric, and topological solitons. This review considers nonlinear optics models giving rise to the appearance of solitons in a narrow sense:solitary waves corresponding to the solutions of completely integrable systems of equations basic for the models being discussed.
引用
收藏
页码:756 / 781
页数:26
相关论文
共 225 条
[1]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]   COHERENT PULSE-PROPAGATION, A DISPERSIVE, IRREVERSIBLE PHENOMENON [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (11) :1852-1858
[3]  
Agranovich V.M., 2006, USP FIZ NAUK, V176, P1052
[4]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
[5]   Complete integrability of the reduced Maxwell-Bloch equations with permanent dipole [J].
Agrotis, M ;
Ercolani, NM ;
Glasgow, SA ;
Moloney, JV .
PHYSICA D, 2000, 138 (1-2) :134-162
[6]   Hamiltonian flows for a reduced Maxwell-Bloch system with permanent dipole [J].
Agrotis, M .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 183 (1-2) :141-158
[7]   Soliton solutions for the interaction of light and matter [J].
Agrotis, MA .
PHYSICS LETTERS A, 2003, 315 (1-2) :81-92
[8]  
AKHMANOV SA, 1967, USP FIZ NAUK, V93, P19
[9]  
Akhmediev N., 2008, Dissipative solitons: from optics to biology and medicine
[10]  
Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams