Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices

被引:85
作者
Abdullaev, Fatkhulla
Abdumalikov, Abdulaziz
Galimzyanov, Ravil
机构
[1] Uzbek Acad Sci, Phys Tech Inst, Tashkent 700084, Uzbekistan
[2] Univ Estadual Paulista, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/j.physleta.2007.02.067
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Properties of localized states on array of BEC confined to a potential, representing superposition of linear and nonlinear optical lattices are investigated. For a shallow lattice case the coupled mode system has been derived. We revealed new types of gap solitons and studied their stability. For the first time a moving soliton solution has been found. Analytical predictions are confirmed by numerical simulations of the Gross-Pitaevskii equation with jointly acting linear and nonlinear periodic potentials. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 31 条
[1]   Propagation of matter-wave solitons in periodic and random nonlinear potentials [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW A, 2005, 72 (06)
[2]  
Abdullaev FK, 2005, INT J MOD PHYS B, V19, P3415
[3]   Adiabatic compression of soliton matter waves [J].
Abdullaev, FK ;
Salerno, M .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2003, 36 (13) :2851-2859
[4]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[5]   SELF-INDUCED TRANSPARENCY SOLITONS IN NONLINEAR REFRACTIVE PERIODIC MEDIA [J].
ACEVES, AB ;
WABNITZ, S .
PHYSICS LETTERS A, 1989, 141 (1-2) :37-42
[6]  
ALFIMOV GL, NLIN0605035
[7]   Localized modes in arrays of boson-fermion mixtures [J].
Bludov, Yu. V. ;
Konotop, V. V. .
PHYSICAL REVIEW A, 2006, 74 (04)
[8]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[9]   Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices [J].
Carusotto, I ;
Embriaco, D ;
La Rocca, GC .
PHYSICAL REVIEW A, 2002, 65 (05) :536111-5361110
[10]   SLOW BRAGG SOLITONS IN NONLINEAR PERIODIC STRUCTURES [J].
CHRISTODOULIDES, DN ;
JOSEPH, RI .
PHYSICAL REVIEW LETTERS, 1989, 62 (15) :1746-1749