Thermal spin current and magnetothermopower by Seebeck spin tunneling

被引:37
作者
Jansen, R. [1 ]
Deac, A. M. [2 ]
Saito, H. [1 ]
Yuasa, S. [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Spintron Res Ctr, Tsukuba, Ibaraki 3058568, Japan
[2] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
关键词
NORMAL-METAL; THERMOPOWER; TRANSPORT; MAGNETORESISTANCE; FERROMAGNET; INJECTION; JUNCTIONS;
D O I
10.1103/PhysRevB.85.094401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The recently observed Seebeck spin tunneling, the thermoelectric analog of spin-polarized tunneling, is described. The fundamental origin is the spin dependence of the Seebeck coefficient of a tunnel junction with at least one ferromagnetic electrode. Seebeck spin tunneling creates a thermal flow of spin-angular momentum across a tunnel barrier without a charge tunnel current. In ferromagnet/insulator/semiconductor tunnel junctions, this can be used to induce a spin accumulation Delta mu in the semiconductor in response to a temperature difference Delta T between the electrodes. A phenomenological framework is presented to describe the thermal spin transport in terms of parameters that can be obtained from experiment or theory. Key ingredients are a spin-polarized thermoelectric tunnel conductance and a tunnel spin polarization with nonzero energy derivative, resulting in different Seebeck tunnel coefficients S-st(up arrow) and S-st(down arrow) for majority and minority spin electrons. We evaluate the thermal spin current, the induced spin accumulation and Delta mu/Delta T, discuss limiting regimes, and compare thermal and electrical flow of spin across a tunnel barrier. A salient feature is that the thermally induced spin accumulation is maximal for smaller tunnel resistance, in contrast to the electrically induced spin accumulation that suffers from the impedance mismatch between a ferromagnetic metal and a semiconductor. The thermally induced spin accumulation produces an additional thermovoltage proportional to Delta mu, which can significantly enhance the conventional charge thermopower. Owing to the Hanle effect, the thermopower can also be manipulated with a magnetic field, producing a Hanle magnetothermopower.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Linear-response theory of spin Seebeck effect in ferromagnetic insulators [J].
Adachi, Hiroto ;
Ohe, Jun-ichiro ;
Takahashi, Saburo ;
Maekawa, Sadamichi .
PHYSICAL REVIEW B, 2011, 83 (09)
[2]   Gigantic enhancement of spin Seebeck effect by phonon drag [J].
Adachi, Hiroto ;
Uchida, Ken-ichi ;
Saitoh, Eiji ;
Ohe, Jun-ichiro ;
Takahashi, Saburo ;
Maekawa, Sadamichi .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[3]   Spin Caloritronics [J].
Bauer, Gerrit E. W. ;
MacDonald, Allan H. ;
Maekawa, Sadamichi .
SOLID STATE COMMUNICATIONS, 2010, 150 (11-12) :459-460
[4]   Spin Seebeck effect in thin films of the Heusler compound Co2MnSi [J].
Bosu, S. ;
Sakuraba, Y. ;
Uchida, K. ;
Saito, K. ;
Ota, T. ;
Saitoh, E. ;
Takanashi, K. .
PHYSICAL REVIEW B, 2011, 83 (22)
[5]   Spin caloritronics in magnetic tunnel junctions: Ab initio studies [J].
Czerner, Michael ;
Bachmann, Michael ;
Heiliger, Christian .
PHYSICAL REVIEW B, 2011, 83 (13)
[6]   Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface [J].
Dash, S. P. ;
Sharma, S. ;
Le Breton, J. C. ;
Peiro, J. ;
Jaffres, H. ;
George, J. -M. ;
Lemaitre, A. ;
Jansen, R. .
PHYSICAL REVIEW B, 2011, 84 (05)
[7]   Electrical creation of spin polarization in silicon at room temperature [J].
Dash, Saroj P. ;
Sharma, Sandeep ;
Patel, Ram S. ;
de Jong, Michel P. ;
Jansen, Ron .
NATURE, 2009, 462 (7272) :491-494
[8]   Semiconductors between spin-polarized sources and drains [J].
Fert, A. ;
George, J.-M. ;
Jaffres, H. ;
Mattana, R. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (05) :921-932
[9]   Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor -: art. no. 184420 [J].
Fert, A ;
Jaffrès, H .
PHYSICAL REVIEW B, 2001, 64 (18)
[10]   Peltier effect in metallic junctions with CPP structure [J].
Fukushima, A ;
Kubota, H ;
Yamamoto, A ;
Suzuki, Y ;
Yuasa, S .
IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (10) :2571-2573