The Split Common Fixed Point Problem by the Hybrid Method for Families of New Demimetric Mappings in Banach Spaces

被引:0
作者
Takahashi, Wataru [1 ,2 ,3 ,4 ]
Wen, Ching-Feng [1 ,2 ]
Yao, Jen-Chih [5 ]
机构
[1] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80708, Taiwan
[2] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 80708, Taiwan
[3] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[4] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[5] China Med Univ, Ctr Gen Educ, Taichung 4040, Taiwan
基金
日本学术振兴会;
关键词
Split common fixed point problem; metric projection; metric resolvent; generalized demimetric mapping; hybrid method; STRONG-CONVERGENCE THEOREMS; MAXIMAL MONOTONE-OPERATORS; VARIATIONAL INEQUALITY PROBLEMS; SHRINKING PROJECTION METHOD; NONLINEAR MAPPINGS; NONEXPANSIVE-MAPPINGS; HILBERT-SPACES; FINITE FAMILY; WEAK;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the split common fixed point problem for families of mappings in Banach spaces. Using the hybrid method, we prove two strong convergence theorems of finding a solution of the split common fixed point problem for families of generalized demimetric mappings in Banach spaces. We also apply these results to obtain well-known and new results for the split common fixed point problem in Banach spaces.
引用
收藏
页码:623 / 644
页数:22
相关论文
共 37 条
[1]  
Alsulami SM, 2014, J NONLINEAR CONVEX A, V15, P793
[2]  
[Anonymous], 2015, LINEAR NONLINEAR ANA
[3]  
[Anonymous], NONLINEAR ANAL OPTIM
[4]  
Aoyama K, 2009, J NONLINEAR CONVEX A, V10, P131
[5]   NONLINEAR MAXIMAL MONOTONE OPERATORS IN BANACH SPACE [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1968, 175 (02) :89-&
[6]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[7]  
Byrne C, 2012, J NONLINEAR CONVEX A, V13, P759
[8]  
Censor Y., 1994, Numer. Algorithms, V8, P221, DOI [DOI 10.1007/BF02142692, 10.1007/BF02142692]
[9]  
Censor Y, 2009, J CONVEX ANAL, V16, P587
[10]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC