Homogenization of the Schrodinger equation and effective mass theorems

被引:82
作者
Allaire, G [1 ]
Piatnitski, A
机构
[1] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[2] HiN, Narvik Inst Technol, N-8505 Narvik, Norway
[3] RAS, PN Lebedev Phys Inst, Moscow 117333, Russia
关键词
D O I
10.1007/s00220-005-1329-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the homogenization of a Schrodinger equation with a large periodic potential: denoting by epsilon the period, the potential is scaled as epsilon(-2). We obtain a rigorous derivation of so- called effective mass theorems in solid state physics. More precisely, for well- prepared initial data concentrating on a Bloch eigenfunction we prove that the solution is approximately the product of a fast oscillating Bloch eigenfunction and of a slowly varying solution of an homogenized Schrodinger equation. The homogenized coefficients depend on the chosen Bloch eigenvalue, and the homogenized solution may experience a large drift. The homogenized limit may be a system of equations having dimension equal to the multiplicity of the Bloch eigenvalue. Our method is based on a combination of classical homogenization techniques ( two- scale convergence and suitable oscillating test functions) and of Bloch waves decomposition.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 34 条
[1]   GENERICITY OF SIMPLE EIGENVALUES FOR ELLIPTIC PDES [J].
ALBERT, JH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (02) :413-418
[2]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[3]   Spectral asymptotic analysis of a neutronic diffusion problem [J].
Allaire, G ;
Malige, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08) :939-944
[4]   Bloch wave homogenization and spectral asymptotic analysis [J].
Allaire, G ;
Conca, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (02) :153-208
[5]   Homogenization of periodic systems with large potentials [J].
Allaire, G ;
Capdeboscq, Y ;
Piatnitski, A ;
Siess, V ;
Vanninathan, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 174 (02) :179-220
[6]  
[Anonymous], 1995, FLUIDS PERIODIC STRU
[7]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[8]  
Brezis H, 1973, Notas de Matematica (50), V5
[9]  
CAZENAVE T, 1990, INTRO PROBLEMES EVOL
[10]   Bloch approximation in homogenization and applications [J].
Conca, C ;
Orive, R ;
Vanninathan, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (05) :1166-1198