On the First Critical Field in the Three Dimensional Ginzburg-Landau Model of Superconductivity

被引:1
作者
Roman, Carlos [1 ]
机构
[1] Univ Leipzig, Math Inst, Augustuspl 10, D-04109 Leipzig, Germany
关键词
MINIMIZERS;
D O I
10.1007/s00220-019-03306-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Ginzburg-Landau model is a phenomenological description of superconductivity. A crucial feature of type-II superconductors is the occurrence of vortices, which appear above a certain value of the strength of the applied magnetic field called the first critical field. In this paper we estimate this value, when the Ginzburg-Landau parameter is large, and we characterize the behavior of the Meissner solution, the unique vortexless configuration that globally minimizes the Ginzburg-Landau energy below the first critical field. In addition, we show that beyond this value, for a certain range of the strength of the applied field, there exists a unique Meissner-type solution that locally minimizes the energy.
引用
收藏
页码:317 / 349
页数:33
相关论文
共 32 条
[1]   On the Ginzburg-Landau model of a superconducting ball in a uniform field [J].
Alama, S ;
Bronsard, L ;
Montero, JA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :237-267
[2]   Variational convergence for functionals of Ginzburg-Landau type [J].
Alberti, G ;
Baldo, S ;
Orlandi, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (05) :1411-1472
[3]   Functions with prescribed singularities [J].
Alberti, G ;
Baldo, S ;
Orlandi, G .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2003, 5 (03) :275-311
[4]   Vortex Density Models for Superconductivity and Superfluidity [J].
Baldo, S. ;
Jerrard, R. L. ;
Orlandi, G. ;
Soner, H. M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (01) :131-171
[5]   Convergence of Ginzburg-Landau Functionals in Three-Dimensional Superconductivity [J].
Baldo, S. ;
Jerrard, R. L. ;
Orlandi, G. ;
Soner, H. M. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :699-752
[6]   THEORY OF SUPERCONDUCTIVITY [J].
BARDEEN, J ;
COOPER, LN ;
SCHRIEFFER, JR .
PHYSICAL REVIEW, 1957, 108 (05) :1175-1204
[7]  
Bethuel F, 2004, J EUR MATH SOC, V6, P17
[8]   Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions [J].
Bethuel, F ;
Brezis, H ;
Orlandi, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) :432-520
[9]   Boundary problems for the Ginzburg-Landau equation [J].
Chiron, D .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (05) :597-648
[10]   On the First Critical Field in Ginzburg-Landau Theory for Thin Shells and Manifolds [J].
Contreras, Andres .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (02) :563-611