DYNAMICS AND LIEB-ROBINSON ESTIMATES FOR LATTICES OF INTERACTING ANHARMONIC OSCILLATORS

被引:14
作者
Amour, L. [1 ]
Levy-Bruhl, P. [1 ]
Nourrigat, J. [1 ]
机构
[1] Univ Reims, Unite CNRS FRE 3111, Dept Math, F-51687 Reims 2, France
关键词
lattices; group velocity; Fock spaces; Lieb-Robinson bounds; thermodynamic limits; Schrodinger operators; correlations; DECAY;
D O I
10.4064/cm118-2-17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of in finite lattices of interacting anharmonic oscillators, we study the existence of the dynamics, together with Lieb-Robinson bounds, in a suitable algebra of observables.
引用
收藏
页码:609 / 648
页数:40
相关论文
共 24 条
[1]   Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis [J].
Ammari, Zied ;
Nier, Francis .
ANNALES HENRI POINCARE, 2008, 9 (08) :1503-1574
[2]   Decay of quantum correlations on a lattice by heat kernel methods [J].
Amour, Laurent ;
Cancelier, Claudy ;
Levy-Bruhl, Pierre ;
Nourrigat, Jean .
ANNALES HENRI POINCARE, 2007, 8 (08) :1469-1506
[3]  
[Anonymous], 1975, METHODS MODERN MATH
[4]  
[Anonymous], 1984, ASTERISQUE
[5]   CHARACTERIZATION OF PSEUDODIFFERENTIAL OPERATORS AND APPLICATIONS [J].
BEALS, R .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (01) :45-57
[6]  
Bony J. M, 2003, GRAD SER ANAL, P17
[7]  
BONY JM, 2007, SEMINAIRE EQUATIONS
[8]  
Bratteli O., 1997, Operator algebras and quantum statistical mechanics, VII
[9]  
Bratteli O., 1987, Operator algebras and quantum statistical mechanics, VI
[10]  
CALDERON AP, 1971, J MATH SOC JPN, V23, P374