Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Caratheodory metrics

被引:65
作者
Capogna, L
Garofalo, N
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Univ Padua, Dipartimento Metodi & Modelli Matemat, I-35131 Padua, Italy
关键词
D O I
10.1007/BF02498217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:403 / 432
页数:30
相关论文
共 53 条
[1]  
[Anonymous], COMMUNICATION
[3]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640
[4]   UNIFORM DOMAINS AND QUASI-CONFORMAL MAPPINGS ON THE HEISENBERG-GROUP [J].
CAPOGNA, L ;
TANG, PQ .
MANUSCRIPTA MATHEMATICA, 1995, 86 (03) :267-281
[5]   AN EMBEDDING THEOREM AND THE HARNACK INEQUALITY FOR NONLINEAR SUBELLIPTIC EQUATIONS [J].
CAPOGNA, L ;
DANIELLI, D ;
GAROFALO, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1765-1794
[6]  
Capogna L, 1996, AM J MATH, V118, P1153
[7]  
CAPOGNA L, 1997, DIRICHLET PROBLEM SU
[8]  
Chow W-L., 1939, MATH ANN, V117, P98, DOI DOI 10.1007/BF01450011
[9]   HARNACK INEQUALITY FOR SUM OF SQUARES OF VECTOR-FIELDS PLUS A POTENTIAL [J].
CITTI, G ;
GAROFALO, N ;
LANCONELLI, E .
AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (03) :699-734
[10]  
CITTI G, 1988, B UNIONE MAT ITAL, V2B, P667