UNIVERSAL ADVERSARIAL ROBUSTNESS OF TEXTURE AND SHAPE-BIASED MODELS

被引:8
作者
Co, Kenneth T. [1 ,2 ]
Munoz-Gonzalez, Luis [1 ]
Kanthan, Leslie [2 ]
Glocker, Ben [1 ]
Lupu, Emil C. [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] DataSpartan Res, London, England
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Universal adversarial perturbations; adversarial machine learning; deep neural networks;
D O I
10.1109/ICIP42928.2021.9506325
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Increasing shape-bias in deep neural networks has been shown to improve robustness to common corruptions and noise. In this paper we analyze the adversarial robustness of texture and shape-biased models to Universal Adversarial Perturbations (UAPs). We use UAPs to evaluate the robustness of DNN models with varying degrees of shape-based training. We find that shape-biased models do not markedly improve adversarial robustness, and we show that ensembles of texture and shape-biased models can improve universal adversarial robustness while maintaining strong performance.
引用
收藏
页码:799 / 803
页数:5
相关论文
共 21 条
[1]  
Athalye A, 2018, PR MACH LEARN RES, V80
[2]  
Biggio Battista, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8190, P387, DOI 10.1007/978-3-642-40994-3_25
[3]  
Brendel W., 2019, P INT C LEARN REPR
[4]   Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks [J].
Co, Kenneth T. ;
Munoz-Gonzalez, Luis ;
de Maupeou, Sixte ;
Lupu, Emil C. .
PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), 2019, :275-289
[5]  
Co Kenneth T., 2021, ARXIV PREPRINT ARXIV
[6]  
Deng YP, 2020, IEEE IMAGE PROC, P1241, DOI [10.1109/icip40778.2020.9191288, 10.1109/ICIP40778.2020.9191288]
[7]   Robust Physical-World Attacks on Deep Learning Visual Classification [J].
Eykholt, Kevin ;
Evtimov, Ivan ;
Fernandes, Earlence ;
Li, Bo ;
Rahmati, Amir ;
Xiao, Chaowei ;
Prakash, Atul ;
Kohno, Tadayoshi ;
Song, Dawn .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1625-1634
[8]  
Geirhos Robert, 2019, INT C LEARNING REPRE
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269