Pointwise convergence of cone-like restricted two-dimensional (C, 1) means of trigonometric Fourier series

被引:46
作者
Gat, Gyoergy [1 ]
机构
[1] Coll Nyiregyhaza, Inst Math & Comp Sci, H-4400 Nyiregyhaza, Hungary
基金
匈牙利科学研究基金会;
关键词
two-dimensional trigonometric Fourier series; (C; 1); means; cone-like restriction; convergence; divergence;
D O I
10.1016/j.jat.2006.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to generalize the more than 60 year old celebrated result of Marcinkiewicz and Zygmund on the convergence of the two-dimensional restricted (C, 1) means of trigonometric Fourier series. They proved for any integrable function f is an element of L-1(T-2) the a.e. convergence sigma(n(1).n(2)) f -> f provided n1/beta <= n2 <=beta n1, where beta > 1 is fixed constant. That is, the set of indices (n1, n2) remains in some positive cone around the identical function. We not only generalize this theorem, but give a necessary and sufficient condition for cone-like sets (of the set of indices) in order to preserve this convergence property. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:74 / 102
页数:29
相关论文
共 13 条
  • [1] Bary NK., 1964, TREATISE TRIGONOMETR
  • [2] EDWARDS R, 1982, FOURIER SERIES MODER, V1
  • [3] Edwards R.E., 1982, FOURIER SERIES MODER, V2
  • [4] On the divergence of the (C, 1) means of double Walsh-Fourier series
    Gát, G
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (06) : 1711 - 1720
  • [5] GAT G, 1996, ANN U SCI BUDAP C, V16, P173
  • [6] Jessen B., 1935, FUNDA MATH, V25, P217, DOI [10.4064/fm-25-1-217-234, DOI 10.4064/FM-25-1-217-234]
  • [7] MARCINKIEWICZ J, 1939, FUND MATH, V32, P112
  • [8] MORICZ F, 1995, STUD MATH, V116, P89
  • [9] NEVEAU I, 1975, DISCRETE PARAMETER M
  • [10] Schipp F., 1990, Walsh series. An introduction to dyadic harmonic analysis