MAXIMUM LIKELIHOOD ESTIMATION FOR COX PROPORTIONAL HAZARDS MODEL WITH A CHANGE HYPERPLANE

被引:4
作者
Deng, Yu [1 ]
Cai, Jianwen [2 ]
Zeng, Donglin [2 ]
机构
[1] Genentech Inc, San Francisco, CA 94080 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
关键词
Change hyperplane; m-out-of-n bootstrap; proportional hazards model; CHANGE-POINT; REGRESSION-MODEL; N-BOOTSTRAP; NUISANCE PARAMETER; RISK; THRESHOLD; INFERENCE;
D O I
10.5705/ss.202020.0141
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a Cox proportional hazards model with a change hyperplane to allow the effect of risk factors to differ depending on whether a linear combination of baseline covariates exceeds a threshold. The proposed model is a natural extension of the change-point hazards model. We maximize the partial likelihood function for estimation and suggest an m-out-of-n bootstrapping procedure for inference. We establish the asymptotic distribution of the estimators and show that the estimators for the change hyperplane converge in distribution to an integrated composite Poisson process defined on a multidimensional space. Finally, the numerical performance of the proposed approach is demonstrated using simulation studies and an analysis of the Cardiovascular Health Study.
引用
收藏
页码:983 / 1006
页数:24
相关论文
共 29 条
  • [1] [Anonymous], 2005, CHOICE M M OUT UNPUB
  • [2] Bickel P. J., 2012, RESAMPLING FEWER N O
  • [3] Bickel PJ, 2008, STAT SINICA, V18, P967
  • [4] Billingsley P, 1999, Convergence of probability measures. Wiley series in probability and statistics. Probability and statistics
  • [5] Cheung KY, 2005, STAT SINICA, V15, P945
  • [6] HYPOTHESIS TESTING WHEN A NUISANCE PARAMETER IS PRESENT ONLY UNDER ALTERNATIVE
    DAVIES, RB
    [J]. BIOMETRIKA, 1977, 64 (02) : 247 - 254
  • [7] DAVIES RB, 1987, BIOMETRIKA, V74, P33, DOI 10.2307/2336019
  • [8] On goodness-of-fit tests for Aalen's additive risk model
    Gandy, A
    Jensen, U
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (03) : 425 - 445
  • [9] Gandy A., 2005, Brazilian Journal of Probability and Statistics, V19, P93
  • [10] HALL P, 1995, BIOMETRIKA, V82, P561