Convergent interpolatory quadrature rules and orthogonal polynomials of varying measures

被引:0
作者
Fidalgo, Ulises [1 ]
Mina-Diaz, Erwin [2 ]
机构
[1] Case Western Reserve Univ, Yost Hall 323,2049 Martin Luther King Jr Dr, Cleveland, OH 44106 USA
[2] Univ Mississippi, Hume Hall 305, University, MS 38677 USA
关键词
Interpolatory quadrature formulas; Orthogonal polynomials; Varying measures;
D O I
10.1007/s11075-017-0444-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (P-n) be a sequence of polynomials such that P-n(x) >0 for x [-1, 1] and in}{-69pt} , where is a measure on [-1, 1] that is regular in the sense of Stahl and Totik. We prove that the interpolatory quadrature rule with nodes at the zeros of q(n) is convergent with respect to provided that the zeros of P-n lie outside a certain curve surrounding [-1, 1].
引用
收藏
页码:423 / 435
页数:13
相关论文
共 8 条
[1]   WHAT DISTRIBUTIONS OF POINTS ARE POSSIBLE FOR CONVERGENT SEQUENCES OF INTERPOLATORY INTEGRATION RULES [J].
BLOOM, T ;
LUBINSKY, DS ;
STAHL, H .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (01) :41-58
[2]  
Bloom T., 1992, NUMER ALGORITHMS, V3, P55
[3]  
Davis PJ, 1984, Methods of Numerical Integration, Vsecond
[4]   Mixed Type Multiple Orthogonal Polynomials for Two Nikishin Systems [J].
Fidalgo Prieto, U. ;
Garcia, A. Lopez ;
Lopez Lagomasino, G. ;
Sorokin, V. N. .
CONSTRUCTIVE APPROXIMATION, 2010, 32 (02) :255-306
[5]   Equilibrium problems associated with fast decreasing polynomials [J].
Kuijlaars, ABJ ;
Dragnev, PD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1065-1074
[6]  
SAFF EB, 1997, SERIES COMPREHENSIVE, V316
[7]  
Stahl H., 1992, GEN ORTHOGONAL POLYN, V43
[8]  
SZEGO S, 1939, ORTHOGONAL POLYNOMIA, V23