Approximating Ricci solitons and quasi-Einstein metrics on toric surfaces

被引:0
|
作者
Hall, Stuart James [1 ]
Murphy, Thomas [2 ]
机构
[1] Manchester Metropolitan Univ, Sch Comp Math & Digital Technol, John Dalton Bldg,Chester St, Manchester M1 5GD, Lancs, England
[2] Calif State Univ Fullerton, Dept Math, 800 N State Coll Bld, Fullerton, CA 92831 USA
来源
NEW YORK JOURNAL OF MATHEMATICS | 2016年 / 22卷
关键词
Ricci soliton; Einstein metric; quasi-Einstein metric; toric Kahler geometry; numerical approximation; KAHLER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a general numerical method for investigating prescribed Ricci curvature problems on toric Kahler manifolds. This method is applied to two generalisations of Einstein metrics, namely Ricci solitons and quasi-Einstein metrics. We begin by recovering the Koiso-Cao soliton and the Lu-Page-Pope quasi-Einstein metrics on CP2#(CP) over bar (2) (in both cases the metrics are known explicitly). We also find numerical approximations to the Wang-Zhu soliton on CP2#2 (CP) over bar (2) (here the metric is not known explicitly). Finally, a substantial numerical investigation of the quasi-Einstein equation on CP2#2 (CP) over bar (2) is conducted. In this case it is an open problem as to whether such metrics exist on this manifold. We find metrics that solve the quasi-Einstein equation to the same degree of accuracy as the approximations to the Wang-Zhu soliton solve the Ricci soliton equation.
引用
收藏
页码:615 / 635
页数:21
相关论文
共 50 条
  • [41] ON RICCI SEMI-SYMMETRIC SUPER QUASI-EINSTEIN HERMITIAN MANIFOLD
    Chaturvedi, Braj Bhushan
    Gupta, Brijesh Kumar
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (04): : 793 - 803
  • [42] ON RICCI PSEUDO-SYMMETRIC SUPER QUASI-EINSTEIN HERMITIAN MANIFOLDS
    Chaturvedi, B. B.
    Gupta, B. K.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 172 - 182
  • [43] Conformal and Quasi-Einstein Metrics on Pseudo-Euclidean Space
    Flávio Raimundo de Souza
    Keti Tenenblat
    Results in Mathematics, 2009, 56
  • [44] Conformal and Quasi-Einstein Metrics on Pseudo-Euclidean Space
    de Souza, Flavio Raimundo
    Tenenblat, Keti
    RESULTS IN MATHEMATICS, 2009, 56 (1-4) : 445 - 452
  • [45] Smooth metric measure spaces, quasi-Einstein metrics, and tractors
    Case, Jeffrey S.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (05): : 1733 - 1762
  • [46] (m,ρ)-quasi-Einstein metrics on(κ,μ)-almost coK ahler manifolds
    Biswasi, Urmila
    Falcitelliii, Maria
    Sarkar, Avijit
    NOTE DI MATEMATICA, 2024, 44 (01): : 85 - 98
  • [47] Solutions to the affine quasi-Einstein equation for homogeneous surfaces
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gilkey, P.
    Valle-Regueiro, X.
    ADVANCES IN GEOMETRY, 2020, 20 (03) : 413 - 432
  • [48] CHARACTERIZING (ρ, r)-QUASI-EINSTEIN SOLITONS IN THE FRAMEWORK OF SYNECTIC LIFT METRIC
    Bilen, Lokman
    Gezer, Aydin
    Tombas, Seyma
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2025, 87 (01): : 107 - 116
  • [49] ON QUASI-EINSTEIN SPACETIMES
    Shaikh, Absos Ali
    Yoon, Dae Won
    Hui, Shyamal Kumar
    TSUKUBA JOURNAL OF MATHEMATICS, 2009, 33 (02) : 305 - 326
  • [50] Almost co-Kahler manifolds and (m, ρ)-quasi-Einstein solitons
    De, Krishnendu
    Khan, Mohammad Nazrul Islam
    De, Uday Chand
    CHAOS SOLITONS & FRACTALS, 2023, 167