Comparative research on network intrusion detection methods based on machine learning

被引:49
|
作者
Zhang, Chunying [1 ]
Jia, Donghao [1 ]
Wang, Liya [1 ]
Wang, Wenjie [1 ]
Liu, Fengchun [2 ]
Yang, Aimin [1 ]
机构
[1] North China Univ Sci & Technol, Coll Sci, Qinhuangdao, Hebei, Peoples R China
[2] North China Univ Sci & Technol, Qianan Coll, Qinhuangdao, Hebei, Peoples R China
关键词
Network intrusion detection; Machine learning; Deep learning; Comparative experiment; ATTACK DETECTION;
D O I
10.1016/j.cose.2022.102861
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network intrusion detection system is an essential part of network security research. It detects intrusion behaviors through active defense technology and takes emergency measures such as alerting and terminating intrusions. With the rapid development of machine learning technology, more and more researchers apply machine learning algorithms to network intrusion detection to improve detection efficiency and accuracy. Due to the different principles of various algorithms, they also have their advantages and disadvantages. To construct the dominant algorithm model in the field of network intrusion detection and provide the accuracy value, this paper systematically combs the application literature of machine learning algorithms in intrusion detection in the past ten years. A review is made from three categories: traditional machine learning, ensemble learning, and deep learning. Then, this paper selects the KDD CUP99 and NSL-KDD datasets to conduct comparative experiments on decision trees, Naive Bayes, support vector machines, random forests, XGBoost, convolutional neural networks, and recurrent neural networks. The detection accuracy, F1, AUC, and other indicators of these algorithms on different data sets are compared. The experimental results show that the effect of the ensemble learning algorithm is generally better. The Naive Bayes algorithm has low accuracy in recognizing the learned data, but it has obvious advantages when facing new types of attacks, and the training speed is faster. The deep learning algorithm is not particularly prominent in this experiment, but its optimal results are affected by the structure, hyperparameters, and the number of training iterations, which need further in-depth study. Finally, the main challenges facing the current network intrusion detection field are summarized, and the future research directions have been prospected. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Comparative Performance Evaluation of Intrusion Detection Based on Machine Learning in In-Vehicle Controller Area Network Bus
    Moulahi, Tarek
    Zidi, Salah
    Alabdulatif, Abdulatif
    Atiquzzaman, Mohammed
    IEEE ACCESS, 2021, 9 : 99595 - 99605
  • [42] Intrusion Detection System: A Comparative Study of Machine Learning-Based IDS
    Singh, Amit
    Prakash, Jay
    Kumar, Gaurav
    Jain, Praphula Kumar
    Ambati, Loknath Sai
    JOURNAL OF DATABASE MANAGEMENT, 2024, 35 (01)
  • [43] Evaluation of Machine Learning Algorithms in Network-Based Intrusion Detection Using Progressive Dataset
    Chua, Tuan-Hong
    Salam, Iftekhar
    SYMMETRY-BASEL, 2023, 15 (06):
  • [44] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 438 - 442
  • [45] Towards a Better Understanding of Machine Learning based Network Intrusion Detection Systems in Industrial Networks
    Borcherding, Anne
    Feldmann, Lukas
    Karch, Markus
    Meshram, Ankush
    Beyerer, Juergen
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2021, : 314 - 325
  • [46] Comparative Analysis of Intrusion Detection System Using Machine Learning and Deep Learning Algorithms
    Note J.
    Ali M.
    Annals of Emerging Technologies in Computing, 2022, 6 (03) : 19 - 36
  • [47] Evaluation of Machine Learning Techniques for Network Intrusion Detection
    Zaman, Marzia
    Lung, Chung-Horng
    NOMS 2018 - 2018 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, 2018,
  • [48] Adversarial machine learning in Network Intrusion Detection Systems
    Alhajjar, Elie
    Maxwell, Paul
    Bastian, Nathaniel
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [49] Machine Learning-Based Adaptive Synthetic Sampling Technique for Intrusion Detection
    Zakariah, Mohammed
    AlQahtani, Salman A. A.
    Al-Rakhami, Mabrook S. S.
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [50] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 303 - 307