Comparative research on network intrusion detection methods based on machine learning

被引:46
|
作者
Zhang, Chunying [1 ]
Jia, Donghao [1 ]
Wang, Liya [1 ]
Wang, Wenjie [1 ]
Liu, Fengchun [2 ]
Yang, Aimin [1 ]
机构
[1] North China Univ Sci & Technol, Coll Sci, Qinhuangdao, Hebei, Peoples R China
[2] North China Univ Sci & Technol, Qianan Coll, Qinhuangdao, Hebei, Peoples R China
关键词
Network intrusion detection; Machine learning; Deep learning; Comparative experiment; ATTACK DETECTION;
D O I
10.1016/j.cose.2022.102861
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network intrusion detection system is an essential part of network security research. It detects intrusion behaviors through active defense technology and takes emergency measures such as alerting and terminating intrusions. With the rapid development of machine learning technology, more and more researchers apply machine learning algorithms to network intrusion detection to improve detection efficiency and accuracy. Due to the different principles of various algorithms, they also have their advantages and disadvantages. To construct the dominant algorithm model in the field of network intrusion detection and provide the accuracy value, this paper systematically combs the application literature of machine learning algorithms in intrusion detection in the past ten years. A review is made from three categories: traditional machine learning, ensemble learning, and deep learning. Then, this paper selects the KDD CUP99 and NSL-KDD datasets to conduct comparative experiments on decision trees, Naive Bayes, support vector machines, random forests, XGBoost, convolutional neural networks, and recurrent neural networks. The detection accuracy, F1, AUC, and other indicators of these algorithms on different data sets are compared. The experimental results show that the effect of the ensemble learning algorithm is generally better. The Naive Bayes algorithm has low accuracy in recognizing the learned data, but it has obvious advantages when facing new types of attacks, and the training speed is faster. The deep learning algorithm is not particularly prominent in this experiment, but its optimal results are affected by the structure, hyperparameters, and the number of training iterations, which need further in-depth study. Finally, the main challenges facing the current network intrusion detection field are summarized, and the future research directions have been prospected. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Deep Learning Methods for Intrusion Detection Systems based Machine Learning in MANET
    Laqtib, Safaa
    El Yassini, Khalid
    Lahcen Hasnaoui, Moulay
    4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
  • [22] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE Access, 2021, 9 : 7550 - 7563
  • [23] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE ACCESS, 2021, 9 : 7550 - 7563
  • [24] A Comparative Study of Using Boosting-Based Machine Learning Algorithms for IoT Network Intrusion Detection
    Saied, Mohamed
    Guirguis, Shawkat
    Madbouly, Magda
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [25] A Comparative Study of Using Boosting-Based Machine Learning Algorithms for IoT Network Intrusion Detection
    Mohamed Saied
    Shawkat Guirguis
    Magda Madbouly
    International Journal of Computational Intelligence Systems, 16
  • [26] Research on Intrusion Detection Based on Kohonen Network and Support Vector Machine
    Shuai, Chunyan
    Yang, Hengcheng
    Gong, Zeweiyi
    6TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION (CDMMS 2018), 2018, 1967
  • [27] Machine Learning Classification Model For Network Based Intrusion Detection System
    Kumar, Sanjay
    Viinikainen, Ari
    Hamalainen, Timo
    2016 11TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2016, : 242 - 249
  • [28] Application of intrusion detection technology in network safety based on machine learning
    Fang, Weijian
    Tan, Xiaoling
    Wilbur, Dominic
    SAFETY SCIENCE, 2020, 124
  • [29] Research on Network Intrusion Detection Based on Incremental Extreme Learning Machine and Adaptive Principal Component Analysis
    Gao, Jianlei
    Chai, Senchun
    Zhang, Baihai
    Xia, Yuanqing
    ENERGIES, 2019, 12 (07)
  • [30] Machine Learning Techniques for Intrusion Detection: A Comparative Analysis
    Hamid, Yasir
    Sugumaran, M.
    Journaux, Ludovic
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATICS AND ANALYTICS (ICIA' 16), 2016,