Thermal blinding of gated detectors in quantum cryptography

被引:110
作者
Lydersen, Lars [1 ,2 ]
Wiechers, Carlos [3 ,4 ,5 ]
Wittmann, Christoffer [3 ,4 ]
Elser, Dominique [3 ,4 ]
Skaar, Johannes [1 ,2 ]
Makarov, Vadim [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Elect & Telecommun, NO-7491 Trondheim, Norway
[2] Univ Grad Ctr, NO-2027 Kjeller, Norway
[3] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[4] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany
[5] Univ Guanajuato, Dept Fis, Guanajuato 37150, Mexico
关键词
PHOTON AVALANCHE-DIODES; KEY DISTRIBUTION; UNCONDITIONAL SECURITY; EFFICIENCY MISMATCH; STATES ATTACK; SYSTEM; PROOF; CRYPTOSYSTEMS; INFORMATION; TIME;
D O I
10.1364/OE.18.027938
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch. (C) 2010 Optical Society of America
引用
收藏
页码:27938 / 27954
页数:17
相关论文
共 52 条
[1]   Continuous-variable quantum information processing [J].
Andersen, Ulrik L. ;
Leuchs, Gerd ;
Silberhorn, Christine .
LASER & PHOTONICS REVIEWS, 2010, 4 (03) :337-354
[2]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[3]   An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light [J].
Bethune, DS ;
Risk, WP .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (03) :340-347
[4]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[5]   Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate [J].
Chau, HF .
PHYSICAL REVIEW A, 2002, 66 (06) :4
[6]   Evolution and prospects for single-photon avalanche diodes and quenching circuits [J].
Cova, S ;
Ghioni, M ;
Lotito, A ;
Rech, I ;
Zappa, F .
JOURNAL OF MODERN OPTICS, 2004, 51 (9-10) :1267-1288
[7]   TOWARDS PICOSECOND RESOLUTION WITH SINGLE-PHOTON AVALANCHE-DIODES [J].
COVA, S ;
LONGONI, A ;
ANDREONI, A .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1981, 52 (03) :408-412
[8]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[9]   Phase-remapping attack in practical quantum-key-distribution systems [J].
Fung, Chi-Hang Fred ;
Qi, Bing ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
PHYSICAL REVIEW A, 2007, 75 (03)
[10]  
Fung CHF, 2009, QUANTUM INF COMPUT, V9, P131