Sensing-Applications of Surface-Based Single Vesicle Arrays

被引:41
作者
Christensen, Sune M. [1 ,2 ,3 ]
Stamou, Dimitrios G. [1 ,2 ,3 ,4 ]
机构
[1] Univ Copenhagen, Dept Neurosci & Pharmacol, Bionanotechnol Lab, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Nanosci Ctr, DK-2100 Copenhagen, Denmark
[3] Univ Copenhagen, Dept Neurosci & Pharmacol, Lundbeck Fdn Ctr Biomembranes Nanomed, DK-2100 Copenhagen, Denmark
[4] Univ Copenhagen, Ctr Pharmaceut Nanotechnol & Nanotoxicol, DK-2100 Copenhagen, Denmark
关键词
vesicles; single vesicles; model membrane systems; nanoreactors; MEMBRANE-ANCHORED PROTEINS; SUPPORTED LIPID-BILAYERS; AMPHIPATHIC HELICES; BAR DOMAINS; SIZE DISTRIBUTIONS; MOLECULE FRET; FUSION; CURVATURE; LIPOSOMES; CELL;
D O I
10.3390/s101211352
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A single lipid vesicle can be regarded as an autonomous ultra-miniaturised 3D biomimetic "scaffold" (empty set >= 13 nm) ideally suited for reconstitution and interrogation of biochemical processes. The enclosing lipid bilayer membrane of a vesicle can be applied for studying binding (protein/lipid or receptor/ligand interactions) or transmembrane events (membrane permeability or ion channel activation) while the aqueous vesicle lumen can be used for confining few or single macromolecules and probe, e. g., protein folding, catalytic pathways of enzymes or more complex biochemical reactions, such as signal transduction cascades. Immobilisation (arraying) of single vesicles on a solid support is an extremely useful technique that allows detailed characterisation of vesicle preparations using surface sensitive techniques, in particular fluorescence microscopy. Surface-based single vesicle arrays allow a plethora of prototypic sensing applications in a high throughput format with high spatial and high temporal resolution. In this review we present a series of applications of single vesicle arrays for screening/sensing of: membrane curvature dependent protein-lipid interactions, bilayer tension, reactions triggered in the vesicle lumen, the activity of transmembrane protein channels and biological membrane fusion reactions.
引用
收藏
页码:11352 / 11368
页数:17
相关论文
共 63 条
[51]   Miniaturization in functional genomics and proteomics [J].
Sauer, S ;
Lange, BMH ;
Gobom, J ;
Nyarsik, L ;
Seitz, H ;
Lehrach, H .
NATURE REVIEWS GENETICS, 2005, 6 (06) :465-476
[52]   Site-Specific DNA-Controlled Fusion of Single Lipid Vesicles to Supported Lipid Bilayers [J].
Simonsson, Lisa ;
Jonsson, Peter ;
Stengel, Gudrun ;
Hook, Fredrik .
CHEMPHYSCHEM, 2010, 11 (05) :1011-1017
[53]  
SLATER SJ, 1994, J BIOL CHEM, V269, P4866
[54]   Self-assembled microarrays of attoliter molecular vessels [J].
Stamou, D ;
Duschl, C ;
Delamarche, E ;
Vogel, H .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (45) :5580-5583
[55]   The synaptic vesicle cycle [J].
Südhof, TC .
ANNUAL REVIEW OF NEUROSCIENCE, 2004, 27 :509-547
[56]   COMPARATIVE PROPERTIES AND METHODS OF PREPARATION OF LIPID VESICLES (LIPOSOMES) [J].
SZOKA, F ;
PAPAHADJOPOULOS, D .
ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1980, 9 :467-508
[57]   Biohybrid Polymer Capsules [J].
van Dongen, Stijn F. M. ;
de Hoog, Hans-Peter M. ;
Peters, Ruud J. R. W. ;
Nallani, Madhavan ;
Nolte, Roeland J. M. ;
van Hest, Jan C. M. .
CHEMICAL REVIEWS, 2009, 109 (11) :6212-6274
[58]   SNAREpins: Minimal machinery for membrane fusion [J].
Weber, T ;
Zemelman, BV ;
McNew, JA ;
Westermann, B ;
Gmachl, M ;
Parlati, F ;
Sollner, TH ;
Rothman, JE .
CELL, 1998, 92 (06) :759-772
[59]   Physical Aspects of Viral Membrane Fusion [J].
Wessels, Laura ;
Weninger, Keith .
THESCIENTIFICWORLDJOURNAL, 2009, 9 :764-780
[60]   Complexin and Ca2+ stimulate SNARE-mediated membrane fusion [J].
Yoon, Tae-Young ;
Lu, Xiaobing ;
Diao, Jiajie ;
Lee, Soo-Min ;
Ha, Taekjip ;
Shin, Yeon-Kyun .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (07) :707-713