DIRICHLET SERIES SATISFYING A RIEMANN TYPE FUNCTIONAL EQUATION AND SHARING A SET

被引:0
作者
Li, Xiao-Min [1 ]
Wu, Cong-Cong [1 ]
Yi, Hong-Xun [2 ]
机构
[1] Ocean Univ China, Dept Math, Qingdao 266100, Shandong, Peoples R China
[2] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2020年 / 46卷 / 04期
关键词
Dirichlet series; L-function; meromorphic function; Selberg class; UNIQUENESS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2011, Li [9] proved that if two L-functions L-1 and L-2 satisfy the same functional equation with a(1) = 1 and L-1(-1) (cj) = L-2(-1) (cj) for two finite distinct complex numbers c(1) and c(2), then L-1 = L-2. We prove that if two L-functions L-1 and L-2 satisfy the same functional equation with a(1) = 1 and EL1(S) = EL2(S) for a finite set S = {c(1), c(2)}, where c(1) and c(2) are two finite distinct complex values, then L-1 = L-2.
引用
收藏
页码:915 / 933
页数:19
相关论文
共 17 条
  • [11] Mokhonko A.Z., THEORY FUNCTIONS FUN, V14x, P83
  • [12] An unequivocal clause in the theory of meromorphic function
    Nevanlinna, R
    [J]. ACTA MATHEMATICA, 1927, 48 (3-4) : 367 - 391
  • [13] Qiao JY., 1989, KODAI MATH J, V12, P429
  • [14] SELBERG A., 1991, COLLECT PAPERS, VII, P47
  • [15] Steuding J, 2007, LECT NOTES MATH, V1877, pIX
  • [16] Yang C. C., 2003, Uniqueness Theory of Meromorphic Functions
  • [17] Yang L., 1993, Value Distribution Theory