Exact density profiles and symmetry classification for strongly interacting multi-component Fermi gases in tight waveguides

被引:39
作者
Decamp, Jean [1 ]
Armagnat, Pacome [2 ,3 ]
Fang, Bess [3 ]
Albert, Mathias [1 ]
Minguzzi, Anna [4 ,5 ]
Vignolo, Patrizia [1 ]
机构
[1] Univ Nice Sophia Antipolis, Inst Non Lineaire Nice, CNRS, 1361 Route Lucioles, F-06560 Valbonne, France
[2] Univ Grenoble Alpes, INAC PHELIQS, F-38000 Grenoble, France
[3] CEA, INAC PHELIQS, F-38000 Grenoble, France
[4] Univ Paris 06, Sorbonne Univ, CNRS, LNE SYRTE,Observ Paris,PSL Res Univ, 61 Ave Observ, F-75014 Paris, France
[5] Univ Grenoble Alpes, LPMMC, BP166, F-38042 Grenoble, France
关键词
one-dimensional systems; strongly interacting Fermi gases; Lieb-Mattis theorem; ONE-DIMENSIONAL TRAPS; MANY-BODY PROBLEM; 2-BODY INTERACTIONS; SYSTEMS; BOSONS;
D O I
10.1088/1367-2630/18/5/055011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a mixture of one-dimensional strongly interacting Fermi gases with up to six components, subjected to a longitudinal harmonic confinement. In the limit of infinitely strong repulsions we provide an exact solution which generalizes the one for the two-component mixture. We show that an imbalanced mixture under harmonic confinement displays partial spatial separation among the components, with a structure which depends on the relative population of the various components. Furthermore, we provide a symmetry characterization of the ground and excited states of the mixture introducing and evaluating a suitable operator, namely the conjugacy class sum. We show that, even under external confinement, the gas has a definite symmetry which corresponds to the most symmetric one compatible with the imbalance among the components. This generalizes the predictions of the Lieb-Mattis theorem for a Fermionic mixture with more than two components.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Tan relations in one dimension [J].
Barth, Marcus ;
Zwerger, Wilhelm .
ANNALS OF PHYSICS, 2011, 326 (10) :2544-2565
[2]  
Cui X, 2014, PHYS REV A, V89
[3]   Momentum distributions and numerical methods for strongly interacting one-dimensional spinor gases [J].
Deuretzbacher, F. ;
Becker, D. ;
Santos, L. .
PHYSICAL REVIEW A, 2016, 94 (02)
[4]   Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases [J].
Deuretzbacher, F. ;
Becker, D. ;
Bjerlin, J. ;
Reimann, S. M. ;
Santos, L. .
PHYSICAL REVIEW A, 2014, 90 (01)
[5]   Exact solution of strongly interacting quasi-one-dimensional spinor Bose gases [J].
Deuretzbacher, F. ;
Fredenhagen, K. ;
Becker, D. ;
Bongs, K. ;
Sengstock, K. ;
Pfannkuche, D. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[6]   Exact solution for the degenerate ground-state manifold of a strongly interacting one-dimensional Bose-Fermi mixture [J].
Fang, Bess ;
Vignolo, Patrizia ;
Gattobigio, Mario ;
Miniatura, Christian ;
Minguzzi, Anna .
PHYSICAL REVIEW A, 2011, 84 (02)
[7]   Finite one-dimensional impenetrable Bose systems: Occupation numbers [J].
Forrester, PJ ;
Frankel, NE ;
Garoni, TM ;
Witte, NS .
PHYSICAL REVIEW A, 2003, 67 (04) :17
[8]   CRITICAL EXPONENTS OF THE DEGENERATE HUBBARD-MODEL [J].
FRAHM, H ;
SCHADSCHNEIDER, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1463-1480
[9]   UN SYSTEME A UNE DIMENSION DE FERMIONS EN INTERACTION [J].
GAUDIN, M .
PHYSICS LETTERS A, 1967, A 24 (01) :55-&
[10]   Correlations of the Upper Branch of 1D Harmonically Trapped Two-Component Fermi Gases [J].
Gharashi, Seyed Ebrahim ;
Blume, D. .
PHYSICAL REVIEW LETTERS, 2013, 111 (04)