Genetic Algorithm Design of MOF-based Gas Sensor Arrays for CO2-in-Air Sensing

被引:11
作者
Day, Brian A. [1 ]
Wilmer, Christopher E. [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Chem & Petr Engn, 3700 OHara St, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Elect & Comp Engn, 3700 OHara St, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
metal-organic framework; computational design; carbon dioxide; gas sensing; METAL-ORGANIC FRAMEWORKS; ELECTRONIC NOSE; MOLECULAR SIMULATION; ADSORPTION; PERFORMANCE; METHANE; CO2; HYDROGEN; PLATFORM;
D O I
10.3390/s20030924
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Gas sensor arrays, also known as electronic noses, leverage a diverse set of materials to identify the components of complex gas mixtures. Metal-organic frameworks (MOFs) have emerged as promising materials for electronic noses due to their high-surface areas and chemical as well as structural tunability. Using our recently reported genetic algorithm design approach, we examined a set of 50 MOFs and searched through over 1.125 x 10(15) unique array combinations to identify optimal arrays for the detection of CO2 in air. We found that despite individual MOFs having lower selectivity for O-2 or N-2 relative to CO2, intelligently selecting the right combinations of MOFs enables accurate prediction of the concentrations of all components in the mixture (i.e., CO2, O-2, N-2). We also analyzed the physical properties of the elements in the arrays to develop an intuition for improving array design. Notably, we found that an array whose MOFs have diversity in their volumetric surface areas has improved sensing. Consistent with this observation, we found that the best arrays consistently had greater structural diversity (e.g., pore sizes, void fractions, and surface areas) than the worst arrays.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Breath sensors for lung cancer diagnosis [J].
Adiguzel, Yekbun ;
Kulah, Haluk .
BIOSENSORS & BIOELECTRONICS, 2015, 65 :121-138
[2]  
Arshak K., 2004, Sensor Review, V24, P181, DOI 10.1108/02602280410525977
[3]   Reversible Interconversion between Luminescent Isomeric Metal-Organic Frameworks of [Cu4I4(DABCO)2] (DABCO=1,4-Diazabicyclo[2.2.2]octane) [J].
Braga, Dario ;
Maini, Lucia ;
Mazzeo, Paolo P. ;
Ventura, Barbara .
CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (05) :1553-1559
[4]   Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping [J].
Burgues, Javier ;
Hernandez, Victor ;
Lilienthal, Achim J. ;
Marco, Santiago .
SENSORS, 2019, 19 (03)
[5]   Post-Synthetic Modification of Tagged Metal-Organic Frameworks [J].
Burrows, Andrew D. ;
Frost, Christopher G. ;
Mahon, Mary F. ;
Richardson, Christopher .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (44) :8482-8486
[6]   Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices [J].
Campbell, Michael G. ;
Dinca, Mircea .
SENSORS, 2017, 17 (05)
[7]   Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring [J].
Cavallari, Marco R. ;
Izquierdo, Jose E. E. ;
Braga, Guilherme S. ;
Dirani, Ely A. T. ;
Pereira-da-Silva, Marcelo A. ;
Rodriguez, Estrella F. G. ;
Fonseca, Fernando J. .
SENSORS, 2015, 15 (04) :9592-9609
[8]   Potential Applications and Limitations of Electronic Nose Devices for Plant Disease Diagnosis [J].
Cellini, Antonio ;
Blasioli, Sonia ;
Biondi, Enrico ;
Bertaccini, Assunta ;
Braschi, Ilaria ;
Spinelli, Francesco .
SENSORS, 2017, 17 (11)
[9]   Computation-Ready, Experimental Metal-Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals [J].
Chung, Yongchul G. ;
Camp, Jeffrey ;
Haranczyk, Maciej ;
Sikora, Benjamin J. ;
Bury, Wojciech ;
Krungleviciute, Vaiva ;
Yildirim, Taner ;
Farha, Omar K. ;
Sholl, David S. ;
Snurr, Randall Q. .
CHEMISTRY OF MATERIALS, 2014, 26 (21) :6185-6192
[10]   RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials [J].
Dubbeldam, David ;
Calero, Sofia ;
Ellis, Donald E. ;
Snurr, Randall Q. .
MOLECULAR SIMULATION, 2016, 42 (02) :81-101