MAXIMAL RESTRICTION ESTIMATES AND THE MAXIMAL FUNCTION OF THE FOURIER TRANSFORM

被引:10
作者
Ramos, Joao P. G. [1 ]
机构
[1] Univ Bonn, Math Inst, D-53115 Bonn, Germany
关键词
Maximal functions; Fourier restriction; Fourier transform;
D O I
10.1090/proc/14805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove inequalities concerning the restriction of the strong maximal function of the Fourier transform to the circle, providing an answer to a question left open by Muller, Ricci, and Wright. We employ methods similar in spirit to the classical proofs of the two-dimensional restriction theorem, with the addition of a suitable trick to help us linearise our maximal function. In the end, we comment on how to use the same linearisation trick in combination with Vitturi's duality argument to obtain sharper high-dimensional results for the Hardy-Littlewood maximal function.
引用
收藏
页码:1131 / 1138
页数:8
相关论文
共 14 条
[1]  
[Anonymous], PREPRINT
[2]   OSCILLATORY INTEGRALS AND A MULTIPLIER PROBLEM FOR DISK [J].
CARLESON, L ;
SJOLIN, P .
STUDIA MATHEMATICA, 1972, 44 (03) :287-&
[3]   INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS [J].
FEFFERMAN, C .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :9-+
[4]  
Fraccaroli M., COMMUNICATION
[5]   A RESTRICTION ESTIMATE USING POLYNOMIAL PARTITIONING [J].
Guth, Larry .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (02) :371-413
[6]  
Hickmand J., PREPRINT
[7]  
Kovac V., PREPRINT
[8]  
Muller D., PREPRINT
[9]  
SJOLIN P, 1974, STUD MATH, V51, P169
[10]  
Tao T, 2004, APPL NUM HARM ANAL, P217