The approximate solution of a class of Fredholm integral equations with a weakly singular kernel

被引:7
作者
Babolian, E. [1 ]
Hajikandi, A. Arzhang [1 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Math, Tehran, Iran
关键词
Cauchy kernel; Weakly singular; Taylor series; Galerkin method; Legendre functions;
D O I
10.1016/j.cam.2010.07.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for finding the numerical solution of a weakly singular Fredholm integral equation of the second kind is presented. The Taylor series is used to remove singularity and Legendre polynomials are used as a basis. Furthermore, the Legendre function of the second kind is used to remove singularity in the Cauchy type integral equation. The integrals that appear in this method are computed in terms of gamma and beta functions and some of these integrals are computed in the Cauchy principal value sense without using numerical quadratures. Four examples are given to show the accuracy of the method. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1148 / 1159
页数:12
相关论文
共 22 条
[11]  
Davis PJ, 1975, INTERPOLATION APPROX
[12]  
ESTRADA R, 2000, SINGULAR INTEGRAL EQ
[14]  
Golberg M.A., 1990, NUMERICAL SOLUTION I
[15]  
JIN XQ, 2008, SFD, V75, P1005
[16]   Application of Jacobi polynomials to approximate solution of a singular integral equation with Cauchy kernel [J].
Karczmarek, Pawel ;
Pylak, Dorota ;
Sheshko, Michail A. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (01) :694-707
[17]  
Kythe PK., 2011, Computational Methods for Linear Integral Equations
[18]  
Lifanov I., 2004, HYPERSINGULAR INTEGR
[19]   Approximate solution of a class of singular integral equations of second kind [J].
Mandal, B. N. ;
Bera, G. H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) :189-195
[20]  
Muskhelishvili NI., 1953, Singular Integral Equations