Pattern-equivariant functions and cohomology

被引:30
作者
Kellendonk, J [1 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF2 4YH, S Glam, Wales
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 21期
关键词
D O I
10.1088/0305-4470/36/21/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cohomology of a tiling or a point pattern has originally been defined via the construction of the hull or the groupoid associated with the tiling or the pattern. Here we present a construction which is more direct and, therefore, more easily accessible. It is based on generalizing the notion of equivariance from lattices to point patterns of finite local complexity.
引用
收藏
页码:5765 / 5772
页数:8
相关论文
共 14 条
[1]   Topological invariants for substitution tilings and their associated C*-algebras [J].
Anderson, JE ;
Putnam, IF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :509-537
[2]  
[Anonymous], 1990, Geometrie non commutative
[3]   QUASI-PERIODIC TILINGS WITH TENFOLD SYMMETRY AND EQUIVALENCE WITH RESPECT TO LOCAL DERIVABILITY [J].
BAAKE, M ;
SCHLOTTMANN, M ;
JARVIS, PD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :4637-4654
[4]  
BOTT R, 1982, DIFFERENTIAL FORMS A
[5]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[6]   The cohomology and K-theory of commuting hemeomorphisms of the Cantor set [J].
Forrest, A ;
Hunton, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :611-625
[7]   Cohomology of canonical projection tilings [J].
Forrest, AH ;
Hunton, JR ;
Kellendonk, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (02) :289-322
[8]  
GAHLER F, 2002, COMMUNICATION
[9]  
Grunbaum B, 1987, TILINGS PATTERNS
[10]   NONCOMMUTATIVE GEOMETRY OF TILINGS AND GAP LABELING [J].
KELLENDONK, J .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (07) :1133-1180