Phragmen-Lindelof theorem of minimal surface equations in domains with symmetry

被引:1
作者
Hsieh, CC [1 ]
机构
[1] Acad Sinica, Math Inst, Taipei 11529, Taiwan
关键词
minimal surface; Phragmen-Lindelof theorem;
D O I
10.1023/A:1005009011018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we prove that if u satisfies the minimal surface equation with vanishing Dirichlet data, in an unbounded domain Omega which is contained in a domain with symmetry, then the growth rate of u is determined completely by the shape of Omega.
引用
收藏
页码:97 / 109
页数:13
相关论文
共 2 条
[2]   ON NEW RESULTS IN THEORY OF MINIMAL SURFACES [J].
NITSCHE, JCC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 71 (02) :195-&