High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte

被引:112
作者
Chen, Jiawei [1 ,2 ]
Peng, Yu [1 ,2 ]
Yin, Yue [1 ,2 ]
Liu, Mingzhu [3 ]
Fang, Zhong [1 ,2 ]
Xie, Yihua [1 ,2 ]
Chen, Bowen [4 ]
Cao, Yongjie [1 ,2 ]
Xing, Lidan [3 ]
Huang, Jianhang [1 ,2 ]
Wang, Yonggang [1 ,2 ]
Dong, Xiaoli [1 ,2 ]
Xia, Yongyao [1 ,2 ]
机构
[1] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] South China Normal Univ, Sch Chem,Engn Res Ctr MTEES,Natl & Local Joint En, Innovat Platform ITBMD Guangzhou Municipal,Minist, Key Lab ETESPG GHEI,Res Ctr BMET Guangdong Prov, Guangzhou 510006, Peoples R China
[4] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Suzhou Inst Nanotech & NanoBion SINANO, I Lab, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
LITHIUM METAL; SODIUM; CHEMISTRY; ANODES;
D O I
10.1039/d2ee01257j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-voltage sodium metal batteries (SMBs) offer a viable way toward high energy densities. However, they synchronously place severe demands on the electrolyte for the notorious reactivity of Na-metal and the catalytic nature of aggressive high-voltage chemistries. Here, we fabricate a tailored carbonate-based electrolyte involving lithium difluorobis(oxalato) phosphate (LiDFBOP) as a multifunctional additive, where DFBOP- anions can generate stable and robust interphases on both the anode and cathode. Meanwhile, Li+-ions can take part in the solvation structure to regulate the electrolyte stability as well as resist dendritic deposition via electrostatic shielding. Such optimization effectively realizes high coulombic efficiency (98.6%) and prolonged life (2600 h) of Na plating/stripping together with the upgraded reversibility of the Na3V2(PO4)(2)F-3 cathode. Moreover, the assembled 4.5 V Na||Na3V2(PO4)(2)F-3 SMB achieves impressive cycling stability with 90% capacity retention after 220 cycles and a high energy density of 295 W h kg(-1) with limited Na. The proposed electrolyte strategy can shed light on further optimization for high-energy sodium metal chemistries.
引用
收藏
页码:3360 / 3368
页数:9
相关论文
共 37 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries [J].
Bai, Panxing ;
Han, Xinpeng ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Yufei ;
Sun, Jie ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2020, 25 :324-333
[3]   Long cycle life and high rate sodium-ion chemistry for hard carbon anodes [J].
Bai, Panxing ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Xinxin ;
Xu, Kang ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2018, 13 :274-282
[4]   Enabling room temperature sodium metal batteries [J].
Cao, Ruiguo ;
Mishra, Kuber ;
Li, Xiaolin ;
Qian, Jiangfeng ;
Engelhard, Mark H. ;
Bowden, Mark E. ;
Han, Kee Sung ;
Mueller, Karl T. ;
Henderson, Wesley A. ;
Zhang, Ji-Guang .
NANO ENERGY, 2016, 30 :825-830
[5]   A Desolvation-Free Sodium Dual-Ion Chemistry for High Power Density and Extremely Low Temperature [J].
Chen, Jiawei ;
Peng, Yu ;
Yin, Yue ;
Fang, Zhong ;
Cao, Yongjie ;
Wang, Yonggang ;
Dong, Xiaoli ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (44) :23858-23862
[6]   Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries [J].
Chen, Xiang ;
Shen, Xin ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhang, Qiang .
CHEM, 2020, 6 (09) :2242-2256
[7]   Interfacial-engineering-enabled practical low-temperature sodium metal battery [J].
Deng, Tao ;
Ji, Xiao ;
Zou, Lianfeng ;
Chiekezi, Obinna ;
Cao, Longsheng ;
Fan, Xiulin ;
Adebisi, Toyosi R. ;
Chang, Hee-Jung ;
Wang, Hui ;
Li, Bin ;
Li, Xiaolin ;
Wang, Chongmin ;
Reed, David ;
Zhang, Ji-Guang ;
Sprenkle, Vincent L. ;
Wang, Chunsheng ;
Lu, Xiaochuan .
NATURE NANOTECHNOLOGY, 2022, 17 (03) :269-+
[8]   High-voltage liquid electrolytes for Li batteries: progress and perspectives [J].
Fan, Xiulin ;
Wang, Chunsheng .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (18) :10486-10566
[9]   Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries [J].
Kim, Mun Sek ;
Zhang, Zewen ;
Rudnicki, Paul E. ;
Yu, Zhiao ;
Wang, Jingyang ;
Wang, Hansen ;
Oyakhire, Solomon T. ;
Chen, Yuelang ;
Kim, Sang Cheol ;
Zhang, Wenbo ;
Boyle, David T. ;
Kong, Xian ;
Xu, Rong ;
Huang, Zhuojun ;
Huang, William ;
Bent, Stacey F. ;
Wang, Lin-Wang ;
Qin, Jian ;
Bao, Zhenan ;
Cui, Yi .
NATURE MATERIALS, 2022, 21 (04) :445-+
[10]   Stable electrode-electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries [J].
Kim, Saehun ;
Park, Sung O. ;
Lee, Min-Young ;
Lee, Jeong-A ;
Kristanto, Imanuel ;
Lee, Tae Kyung ;
Hwang, Daeyeon ;
Kim, Juyoung ;
Wi, Tae-Ung ;
Lee, Hyun-Wook ;
Kwak, Sang Kyu ;
Choi, Nam-Soon .
ENERGY STORAGE MATERIALS, 2022, 45 :1-13