KAM TORI NORMAL COORDINATES

被引:0
作者
Wiesel, William E. [1 ]
机构
[1] USAF, Inst Technol, Dept Aeronaut & Astronaut, Wright Patterson AFB, OH 45433 USA
来源
ASTRODYNAMICS 2009, VOL 135, PTS 1-3 | 2010年 / 135卷
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The solution to motion in the vicinity of a KAM torus is constructed. Applying both the KAM theorem and assuming that Hamiltonian motion holds on at least a Cantor set of adjacent tori, the local linearization of a KAM torus can be constructed. A set of eigenvalue - like quantities must be determined to produce a description of local motion that remains bounded. The local motion near a KAM torus involves linear drift, and the Jordan form needs to be generalized to a full symmetric matrix.
引用
收藏
页码:1575 / 1582
页数:8
相关论文
共 9 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]  
[Anonymous], P PORQ SCH SEPT
[3]  
Arnold V.I., 1963, Uspekhi Mat. Nauk, V18, P13, DOI DOI 10.1070/RM1963V018N05ABEH004130
[4]  
Kolmogorov AN., 1954, DOKL AKAD NAUK SSSR, V98, P527, DOI DOI 10.1007/BFB0021737
[5]  
Laskar J., 1999, NATO ASI Series, Vol. 533, P134
[6]  
Moser J., 1962, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl., V1962, P1
[7]  
Rugh W.J., 1993, LINEAR SYSTEM THEORY, V2nd
[8]  
Szebehely V., 1967, RESTRICTED PROBLEM 3
[9]   Earth Satellite Orbits as KAM Tori [J].
Wiesel, William E. .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2008, 56 (02) :151-162