ADAPTIVE FILTERING FOR (SOIL MOISTURE) DATA ASSIMILATION

被引:0
作者
Gruber, Alexander [1 ]
de Lannoy, Gabrielle [1 ]
机构
[1] Katholieke Univ Leuven, Dept Earth & Environm Sci, Heverlee, Belgium
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
soil moisture; data assimilation; adaptive filtering;
D O I
10.1109/IGARSS39084.2020.9323803
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data assimilation (DA) techniques provide the means to integrate observational information into dynamical models. The success of such methods requires accurate knowledge of model and observation uncertainties, which are seldom available. Adaptive DA techniques estimate these uncertainties as part of the system. In this study, we apply the recently developed Monte Carlo based adaptive Kalman Filter (MadKF) to assimilate SMOS brightness temperature (Tb) measurements into the Catchment Land Surface Model for soil moisture state updating. The MadKF yields robust Tb uncertainty estimates and significant skill improvements relative to model-only soil moisture estimates, when evaluated with in situ measurements.
引用
收藏
页码:3924 / 3927
页数:4
相关论文
共 15 条
[1]   U.S. Climate Reference Network Soil Moisture and Temperature Observations [J].
Bell, Jesse E. ;
Palecki, Michael A. ;
Baker, C. Bruce ;
Collins, William G. ;
Lawrimore, Jay H. ;
Leeper, Ronald D. ;
Hall, Mark E. ;
Kochendorfer, John ;
Meyers, Tilden P. ;
Wilson, Tim ;
Diamond, Howard J. .
JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (03) :977-988
[2]   An improved approach for estimating observation and model error parameters in soil moisture data assimilation [J].
Crow, W. T. ;
van den Berg, M. J. .
WATER RESOURCES RESEARCH, 2010, 46
[3]   Estimating precipitation errors using spaceborne surface soil moisture retrievals [J].
Crow, W. T. ;
Bolten, J. D. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (08)
[4]   Diagnosis of observation, background and analysis-error statistics in observation space [J].
Desroziers, G. ;
Berre, L. ;
Chapnik, B. ;
Poli, P. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) :3385-3396
[5]  
Evensen G., 2003, OCEAN DYNAM, V53, P343, DOI DOI 10.1007/S10236-003-0036-9
[6]  
Gelb A., 1989, Applied Optimal Estimation
[7]   Recent advances in (soil moisture) triple collocation analysis [J].
Gruber, A. ;
Su, C-H. ;
Zwieback, S. ;
Crowd, W. ;
Dorigo, W. ;
Wagner, W. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 45 :200-211
[8]   A Monte Carlo based adaptive Kalman filtering framework for soil moisture data assimilation [J].
Gruber, Alexander ;
De Lannoy, Gabrielle ;
Crow, Wade .
REMOTE SENSING OF ENVIRONMENT, 2019, 228 :105-114
[9]   The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle [J].
Kerr, Yann H. ;
Waldteufel, Philippe ;
Wigneron, Jean-Pierre ;
Delwart, Steven ;
Cabot, Francois ;
Boutin, Jacqueline ;
Escorihuela, Maria-Jose ;
Font, Jordi ;
Reul, Nicolas ;
Gruhier, Claire ;
Juglea, Silvia Enache ;
Drinkwater, Mark R. ;
Hahne, Achim ;
Martin-Neira, Manuel ;
Mecklenburg, Susanne .
PROCEEDINGS OF THE IEEE, 2010, 98 (05) :666-687
[10]   A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure [J].
Koster, RD ;
Suarez, MJ ;
Ducharne, A ;
Stieglitz, M ;
Kumar, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D20) :24809-24822