Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite

被引:133
作者
Radon, Adrian [1 ]
Hawelek, Lukasz [1 ]
Lukowiec, Dariusz [2 ]
Kubacki, Jerzy [3 ,4 ]
Wlodarczyk, Patryk [1 ]
机构
[1] Inst Nonferrous Met, Lukasiewicz Res Network, Sowinskiego 5 St, PL-44100 Gliwice, Poland
[2] Silesian Tech Univ, Fac Mech Engn, Konarskiego 18A St, PL-44100 Gliwice, Poland
[3] Univ Silesia, A Chelkowski Inst Phys, 75 Pulku Piechoty 1 St, PL-41500 Chorzow, Poland
[4] Silesian Ctr Educ & Interdisciplinary Res, 75 Pulku Piechoty 1A St, PL-41500 Chorzow, Poland
关键词
MICROWAVE-ABSORPTION; NANOPARTICLES; CONDUCTIVITY; MECHANISM; IMPEDANCE; CONSTANT; BEHAVIOR;
D O I
10.1038/s41598-019-56586-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The new (Zn,Mg,Ni,Fe,Cd)Fe2O4 high entropy ferrite with average crystallite size 11.8 nm was synthesized in two stages by annealing of co-precipitated amorphous precursor. The dielectric spectroscopy confirms, that the electrical conductivity and polarization processes are associated with the mobility of electrons in the structure of ferrite. It was concluded, that the both, high frequency complex dielectric permittivity as well as complex magnetic permeability are strongly temperature and frequency dependent. The AC electrical conductivity is associated with quantum mechanical tunneling of electrons and related to the transfer of charge carriers between Fe2+ and Fe3+ ions. Moreover, the microwave absorption properties were determined. The best microwave absorption properties have been confirmed in the frequency range 1.9 to 2.1 GHz for a layer which is 0.8-1 cm thick. For this range, reflection loss (RL) is lower than -25 dB and shielding effectiveness (SE) lower than -50 dB.
引用
收藏
页数:13
相关论文
共 63 条
[1]   Complex impedance and dielectric properties of an Mg-Zn ferrite [J].
Abdullah, MH ;
Yusoff, AN .
JOURNAL OF ALLOYS AND COMPOUNDS, 1996, 233 (1-2) :129-135
[2]   Magnetic properties and microwave absorption in Ni-Zn and Mn-Zn ferrite nanoparticles synthesized by low-temperature solid-state reaction [J].
Amiri, Gh. R. ;
Yousefi, M. H. ;
Abolhassani, M. R. ;
Manouchehri, S. ;
Keshavarz, M. H. ;
Fatahian, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (06) :730-734
[3]  
Amiri S, 2013, Mater Sci Eng C Mater Biol Appl, V33, P1, DOI 10.1016/j.msec.2012.09.003
[4]   A study of the structural and morphological properties of Ni-ferrite, Zn-ferrite and Ni-Zn-ferrites functionalized with starch [J].
Andjelkovic, Ljubica ;
Suljagic, Marija ;
Lakic, Mladen ;
Jeremic, Dejan ;
Vulic, Predrag ;
Nikolic, Aleksandar S. .
CERAMICS INTERNATIONAL, 2018, 44 (12) :14163-14168
[5]   Zinc ferrite nanoparticles as MRI contrast agents [J].
Barcena, Carlos ;
Sra, Amandeep K. ;
Chaubey, Girija S. ;
Khemtong, Chalermchai ;
Liu, J. Ping ;
Gao, Jinming .
CHEMICAL COMMUNICATIONS, 2008, (19) :2224-2226
[6]   Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications [J].
Batoo, Khalid Mujasam ;
Ansari, Mohammad Shahnawaze .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-14
[7]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[8]   Small polaron conduction in lead modified lanthanum ferrite ceramics [J].
Bhargav, K. K. ;
Ram, S. ;
Majumder, S. B. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 638 :334-343
[9]   Dielectric Properties of Nanocrystalline Zn-Doped Lithium Ferrites Synthesized by Microwave-Induced Glycine-Nitrate Process [J].
Borhan, N. ;
Gheisari, Kh. ;
Shoushtari, M. Zargar .
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2016, 29 (01) :145-151
[10]   Hybrid magnetite-gold nanoparticles as bifunctional magnetic-plasmonic systems: three representative cases [J].
Canet-Ferrer, J. ;
Albella, P. ;
Ribera, A. ;
Usagre, J. V. ;
Maier, S. A. .
NANOSCALE HORIZONS, 2017, 2 (04) :205-216