COUNTING CLOSED GEODESICS IN MODULI SPACE

被引:30
作者
Eskin, Alex [1 ]
Mirzakhani, Maryam [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Closed geodesics; Teichmuller space; Moduli space; TEICHMULLER FLOW; ASYMPTOTICS; GEOMETRY; DYNAMICS;
D O I
10.3934/jmd.2011.5.71
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compute the asymptotics, as R tends to infinity, of the number N(R) of closed geodesics of length at most R in the moduli space of compact Riemann surfaces of genus g. In fact, N(R) is the number of conjugacy classes of pseudo-Anosov elements of the mapping class group of a compact surface of genus g of translation length at most R.
引用
收藏
页码:71 / 105
页数:35
相关论文
共 30 条