Thomas-Fermi Approximation for Coexisting Two Component Bose-Einstein Condensates and Nonexistence of Vortices for Small Rotation

被引:14
作者
Aftalion, Amandine [1 ]
Noris, Benedetta [1 ]
Sourdis, Christos [2 ]
机构
[1] Univ Versailles St Quentin, Lab Math Versailles, CNRS UMR 8100, F-78035 Versailles, France
[2] Univ Crete, Dept Math & Appl Math, Iraklion 71003, Crete, Greece
关键词
VORTEX; EXISTENCE; EQUATIONS; SYSTEMS;
D O I
10.1007/s00220-014-2281-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study minimizers of a Gross-Pitaevskii energy describing a two- component Bose-Einstein condensate confined in a radially symmetric harmonic trap and set into rotation. We consider the case of coexistence of the components in the Thomas-Fermi regime, where a small parameter conveys a singular perturbation. The minimizer of the energy without rotation is determined as the positive solution of a system of coupled PDEs, for which we show uniqueness. The limiting problem for has degenerate and irregular behavior at specific radii, where the gradient blows up. By means of a perturbation argument, we obtain precise estimates for the convergence of the minimizer to this limiting profile, as tends to 0. For low rotation, based on these estimates, we can show that the ground states remain real valued and do not have vortices, even in the region of small density.
引用
收藏
页码:509 / 579
页数:71
相关论文
共 32 条
[1]   Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate [J].
Aftalion, A ;
Alama, S ;
Bronsard, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 178 (02) :247-286
[2]  
Aftalion A., 2007, PROGR NONLINEAR DIFF, V67
[3]  
Aftalion A., 2013, CALC VAR IN PRESS
[4]   Vortex-peak interaction and lattice shape in rotating two-component Bose-Einstein condensates [J].
Aftalion, Amandine ;
Mason, Peter ;
Wei, Juncheng .
PHYSICAL REVIEW A, 2012, 85 (03)
[5]   Non-existence of vortices in the small density region of a condensate [J].
Aftalion, Amandine ;
Jerrard, Robert L. ;
Royo-Letelier, Jimena .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (08) :2387-2406
[6]  
Alama S, 2012, INDIANA U MATH J, V61, P1861
[7]  
[Anonymous], 1965, Lectures on Elliptic Boundary Value Problems
[8]  
Berestycki H., 1997, ANN SCUOLA NORM SU S, V25, P69
[9]   On entire solutions of an elliptic system modeling phase separations [J].
Berestycki, Henri ;
Terracini, Susanna ;
Wang, Kelei ;
Wei, Juncheng .
ADVANCES IN MATHEMATICS, 2013, 243 :102-126
[10]   On Phase-Separation Models: Asymptotics and Qualitative Properties [J].
Berestycki, Henri ;
Lin, Tai-Chia ;
Wei, Juncheng ;
Zhao, Chunyi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (01) :163-200