miR-222-5p promotes dysfunction of human vascular smooth muscle cells by targeting RB1

被引:11
作者
Liu, Yihang [1 ]
Jiang, Guopan [2 ]
Lv, Changzhi [3 ]
Yang, Chuang [1 ]
机构
[1] Second Hosp Jilin Univ, Dept Cardiovasc Med, Jilin, Jilin, Peoples R China
[2] Jilin Prov Peoples Hosp, Dept Cardiovasc Med, Jilin, Jilin, Peoples R China
[3] Dandong First Hosp, Dept Cardiol 2, Dandong, Peoples R China
关键词
ApoE-knockout mice; coronary atherosclerosis; miR-222-5p; RB1; VSMCs; RETINOBLASTOMA PROTEIN; ENDOTHELIAL-CELLS; ATHEROSCLEROSIS; PROLIFERATION; PROGRESSION; MICRORNAS; MIGRATION; RISK; INFLAMMATION; APOPTOSIS;
D O I
10.1002/tox.23434
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Background Coronary atherosclerosis (AS) is characterized by the formation of plaque in the vessel wall. The structural and functional changes of vascular smooth muscle cells (VSMCs) can promote plaque formation and induce plaque instability. Objective To investigate the functions and mechanism of miR-222-5p in VSMCs under the treatment of oxidized low-density lipoprotein (ox-LDL). Methods miR-222-5p expression in ox-LDL-treated VSMCs and the serum of Apolipoprotein E (ApoE) knockout mice was detected by reverse transcription quantitative polymerase chain reaction. The viability and migration of VSMCs were detected by Cell Counting Kit-8 and Transwell assays. Protein levels of proliferation and migration-related factors were evaluated by western blotting. Luciferase reporter assays were performed to explore the binding between miR-222-5p and retinoblastoma susceptibility protein (RB1) gene in VSMCs. ApoE-knockout mice were infected with the lentivirus inhibiting miR-222-5p expression to explore the effect of miR-222-5p on pathological changes. Hematoxylin and eosin (H&E) staining, trichrome staining, and Oil Red O staining were conducted to determine the necrotic core area and atherosclerotic lesion size in the ascending aorta of ApoE-knockout mice. Results With the accumulation of ox-LDL concentration and treatment time, miR-222-5p expression was gradually upregulated in VSMCs. Similarly, miR-222-5p expression was increased in the serum of ApoE-knockout mice. miR-222-5p knockdown inhibited the proliferative and migratory abilities of ox-LDL-treated VSMCs, and the inhibitory effect on cellular behaviors was then significantly reversed by co-knockdown of RB1. RB1 is a downstream target gene of miR-222-5p, and miR-222-5p bound with 3 '-untranslated region of RB1 in VSMCs. We further confirmed that miR-222-5p knockdown alleviated pathological changes and inhibited lipid deposition in the serum of ApoE-knockout mice in vivo. Conclusion miR-222-5p accelerates the dysfunction of VSMCs and promotes pathological changes and lipid deposition in ApoE-knockout mice by targeting RB1. The study may provide novel therapeutic targets for AS.
引用
收藏
页码:683 / 694
页数:12
相关论文
共 39 条
[1]   Abnormal blood rheology and chronic low grade inflammation: Possible risk factors for accelerated atherosclerosis and coronary artery disease in Lewis negative subjects [J].
Alexy, Tamas ;
Pais, Eszter ;
Wenby, Rosalinda B. ;
Mack, Wendy J. ;
Hodis, Howard N. ;
Kono, Naoko ;
Wang, Jun ;
Baskurt, Oguz K. ;
Fisher, Timothy C. ;
Meiselman, Herbert J. .
ATHEROSCLEROSIS, 2015, 239 (01) :248-251
[2]   Coronary Atherosclerosis: Pathophysiologic Basis for Diagnosis and Management [J].
Boudoulas, Konstantinos Dean ;
Triposciadis, Filippos ;
Geleris, Paraschos ;
Boudoulas, Harisios .
PROGRESS IN CARDIOVASCULAR DISEASES, 2016, 58 (06) :676-692
[3]   Atherosclerotic plaque rupture in symptomatic carotid artery stenosis [J].
Carr, S ;
Farb, A ;
Pearce, WH ;
Virmani, R ;
Yao, JST .
JOURNAL OF VASCULAR SURGERY, 1996, 23 (05) :755-765
[4]   Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression [J].
Carreira, S ;
Goodall, J ;
Aksan, I ;
La Rocca, SA ;
Galibert, MD ;
Denat, L ;
Larue, L ;
Goding, CR .
NATURE, 2005, 433 (7027) :764-769
[5]   Separation of Anti-Proliferation and Anti-Apoptotic Functions of Retinoblastoma Protein through Targeted Mutations of Its A/B Domain [J].
Chau, B. Nelson ;
Pan, Chris W. ;
Wang, Jean Y. J. .
PLOS ONE, 2006, 1 (01)
[6]  
Chen L, 2019, EUR REV MED PHARMACO, V23, P2223, DOI 10.26355/eurrev_201903_17270
[7]   Vascular smooth muscle cell in atherosclerosis [J].
Chistiakov, D. A. ;
Orekhov, A. N. ;
Bobryshev, Y. V. .
ACTA PHYSIOLOGICA, 2015, 214 (01) :33-50
[8]   Extracellular vesicle microRNA transfer in cardiovascular disease [J].
Das, Samarjit ;
Halushka, Marc K. .
CARDIOVASCULAR PATHOLOGY, 2015, 24 (04) :199-206
[9]   Role of smooth muscle cells in the initiation and early progression of atherosclerosis [J].
Doran, Amanda C. ;
Meller, Nahum ;
McNamara, Coleen A. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2008, 28 (05) :812-819
[10]   The Emerging Role of MitomiRs in the Pathophysiology of Human Disease [J].
Duarte, Filipe V. ;
Palmeira, Carlos M. ;
Rolo, Anabela P. .
MICRORNA: MEDICAL EVIDENCE: FROM MOLECULAR BIOLOGY TO CLINICAL PRACTICE, 2015, 888 :123-154