Compatibility with Cap-Products in Tsygan's Formality and Homological Duflo Isomorphism

被引:8
作者
Calaque, Damien [1 ]
Rossi, Carlo A. [2 ]
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, UMR5208, F-69622 Villeurbanne, France
[2] Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland
关键词
deformation quantization; B-infinity-algebras and modules; A(infinity)-algebras; pre-calculus structure; Kontsevich's and Tsygan's formality; (co)homological Duflo theorem; DEFORMATION QUANTIZATION; POISSON MANIFOLDS; HOCHSCHILD CHAINS; THEOREMS;
D O I
10.1007/s11005-010-0451-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we prove, with details and in full generality, that the isomorphism induced on tangent homology by the Shoikhet-Tsygan formality L-infinity-quasi-isomorphism for Hochschild chains is compatible with cap-products. This is a homological analogue of the compatibility with cup-products of the isomorphism induced on tangent cohomology by Kontsevich formality L-infinity-quasi-isomorphism for Hochschild cochains. As in the cohomological situation our proof relies on a homotopy argument involving a variant of Kontsevich eye. In particular, we clarify the rle played by the I-cube introduced in Calaque and Rossi (SIGMA 4, paper 060, 17 2008). Since we treat here the case of a most possibly general Maurer-Cartan element, not forced to be a bidifferential operator, we take this opportunity to recall the natural algebraic structures on the pair of Hochschild cochain and chain complexes of an A(infinity)-algebra. In particular we prove that they naturally inherit the structure of an A(infinity)-algebra with an A(infinity)-(bi)module.
引用
收藏
页码:135 / 209
页数:75
相关论文
共 28 条
[1]   Choice of signs for the Kontsevich formality [J].
Arnal, D ;
Manchon, D ;
Masmoudi, M .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 203 (01) :23-66
[2]  
CALAQUE D, 2008, LECT DUFLO ISOMORPHI
[3]  
CALAQUE D, 2009, ARXIV09044890
[4]   Formality theorems for Hochschild chains in the Lie algebroid setting [J].
Calaque, Damien ;
Dogushev, Vasiliy ;
Halbout, Gilles .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 612 :81-127
[5]   Hochschild cohomology and Atiyah classes [J].
Calaque, Damien ;
Van den Bergh, Michel .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :1839-1889
[6]   Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants [J].
Calaque, Damien ;
Rossi, Carlo A. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
[7]   The mukai pairing - II: the Hochschild-Kostant-Rosenberg isomorphism [J].
Caldararu, A .
ADVANCES IN MATHEMATICS, 2005, 194 (01) :34-66
[8]   Relative formality theorem and quantisation of coisotropic submanifolds [J].
Cattaneo, Alberto S. ;
Felder, Giovanni .
ADVANCES IN MATHEMATICS, 2007, 208 (02) :521-548
[9]  
Cattaneo AS, 2002, DUKE MATH J, V115, P329
[10]  
CATTANEO AS, 2005, PANORAMAS SYNTHESES, V20