Global solvability of a class of reaction-diffusion systems with cross-diffusion

被引:1
作者
Wang, Zhi-An [1 ]
Wu, Leyun [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai, Peoples R China
关键词
Reaction-diffusion; Cross-diffusion; Global boundedness; PATTERN-FORMATION; EXISTENCE; BOUNDEDNESS; MODEL; WAVE;
D O I
10.1016/j.aml.2021.107699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a class of reaction-diffusion systems with cross diffusion which have various applications such as autocatalytic chemical reaction, predator-prey interactions, combustion and so on. By imposing some suitable structure assumptions, we establish the global existence and asymptotic behavior of solutions of the system in a two-dimensional bounded domain with Neumann boundary conditions. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 24 条
[1]  
Alikakos N., 1979, Communications in Partial Differential Equations, V4, P827, DOI [10.1080/03605307908820113, DOI 10.1080/03605307908820113]
[2]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[3]  
Amann H., 1990, Differ. Integral Equ, V3, P13, DOI DOI 10.57262/DIE/1371586185
[4]   THE DEVELOPMENT OF TRAVELING WAVES IN QUADRATIC AND CUBIC AUTOCATALYSIS WITH UNEQUAL DIFFUSION RATES .1. PERMANENT FORM TRAVELING WAVES [J].
BILLINGHAM, J ;
NEEDHAM, DJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 334 (1633) :1-24
[5]   TRAVELING WAVE TO NON-KPP ISOTHERMAL DIFFUSION SYSTEMS: EXISTENCE OF MINIMUM SPEED AND SHARP BOUNDS [J].
Chen, Xinfu ;
Qi, Yuanwei .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) :1436-1453
[6]   Global existence for a kinetic model of pattern formation with density -suppressed motilities [J].
Fujie, Kentarou ;
Jiang, Jie .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (06) :5338-5378
[7]   Global existence for reaction-diffusion systems modelling ignition [J].
Herrero, MA ;
Lacey, AA ;
Velazquez, JJL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (03) :219-251
[8]   Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion [J].
Jin, Hai-Yang ;
Wang, Zhi-An .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (04) :652-682
[9]   CRITICAL MASS ON THE KELLER-SEGEL SYSTEM WITH SIGNAL-DEPENDENT MOTILITY [J].
Jin, Hai-Yang ;
Wang, Zhi-An .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (11) :4855-4873
[10]   Boundedness and asymptotics of a reaction -diffusion system with density -dependent motility [J].
Jin, Hai-Yang ;
Shi, Shijie ;
Wang, Zhi-An .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) :6758-6793