Types of Submanifolds in Metallic Riemannian Manifolds: A Short Survey

被引:4
作者
Hretcanu, Cristina E. [1 ]
Blaga, Adara M. [2 ]
机构
[1] Stefan Cel Mare Univ Suceava, Fac Food Engn, Suceava 720229, Romania
[2] West Univ Timisoara, Fac Math & Comp Sci, Timisoara 300223, Romania
关键词
metallic Riemannian manifold; warped product submanifold; slant; semi-slant; hemi-slant; bi-slant submanifold; SEMI-SLANT SUBMANIFOLDS; GEOMETRY;
D O I
10.3390/math9192467
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a brief survey on the properties of submanifolds in metallic Riemannian manifolds. We focus on slant, semi-slant and hemi-slant submanifolds in metallic Riemannian manifolds and, in particular, on invariant, anti-invariant and semi-invariant submanifolds. We also describe the warped product bi-slant and, in particular, warped product semi-slant and warped product hemi-slant submanifolds in locally metallic Riemannian manifolds, obtaining some results regarding the existence and nonexistence of non-trivial semi-invariant, semi-slant and hemi-slant warped product submanifolds. We illustrate all these by suitable examples.
引用
收藏
页数:22
相关论文
共 45 条
[1]   An inequality for warped product submanifolds of a locally product Riemannian manifold [J].
Al-Solamy, Falleh R. ;
Uddin, Siraj .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02) :351-358
[2]   Warped Product Submanifolds of Riemannian Product Manifolds [J].
Al-Solamy, Falleh R. ;
Khan, Meraj Ali .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[3]  
Atceken M., 2015, J ADV MATH, V11, P5587
[4]  
Atceken M., 2009, SERDICA MATH J, V35, P273
[5]   Warped product semi-slant submanifolds in locally Riemannian product manifolds [J].
Atceken, Mehmet .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (02) :177-186
[6]  
Atçeken M, 2011, HACET J MATH STAT, V40, P401
[7]   SLANT SUBMANIFOLDS OF A RIEMANNIAN PRODUCT MANIFOLD [J].
Atceken, Mehmet .
ACTA MATHEMATICA SCIENTIA, 2010, 30 (01) :215-224
[8]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[9]  
Blaga A.M., 2017, LIB MATH, V37, P39
[10]  
Blaga A.M., 2018, Novi Sad J. Math, V48, P57, DOI [10.30755/NSJOM.06365, DOI 10.30755/NSJOM.06365]