Single oxygen vacancies of (TiO2)35 as a prototype reduced nanoparticle: implication for photocatalytic activity

被引:31
作者
Kim, Sunkyung [1 ]
Ko, Kyoung Chul [1 ,2 ,3 ]
Lee, Jin Yong [1 ]
Illas, Francesc [2 ,3 ]
机构
[1] Sungkyunkwan Univ, Dept Chem, Suwon 16419, South Korea
[2] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain
[3] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain
关键词
TIO2; SOLAR-CELLS; TITANIUM-DIOXIDE; BAND-GAP; ANATASE TIO2; RUTILE; DEFECT; STATE; POLYMORPHS; ENERGETICS; STABILITY;
D O I
10.1039/c6cp04515d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanium dioxide (TiO2), as a semiconductor metal oxide, has been one of the most popular materials studied in the field of photocatalysis. In the present study, the properties of single oxygen vacancies of (TiO2)(35), a prototype of an anatase nanoparticle, were investigated by DFT calculations. (TiO2)(35) is the minimum sized model (similar to 2 nm) for a bipyramidal nanoparticle with anatase phase and eight {101} facets. All the available oxygen vacancies at various sites according to position, coordination number, and distance from the center atom were examined. The geometric, energetic and electronic properties of the reduced TiO2 clusters were analyzed by hybrid DFT functionals with different Hartree-Fock exchange ratios (0, 12.5 and 25%). It was found that the structure of pristine (TiO2)(35) is somewhat different from the bulk lattice, with a relatively high surface to volume ratio. Moreover, the particular highly (three)-coordinated oxygen atom is energetically the most favorable for oxygen vacancy formation from the nanoparticle mainly due to its substantially high relaxation energy. TiO2 nanoparticles have low oxygen vacancy formation energy and narrow band gap because of their defect states, and can be utilized as an efficient photocatalyst material.
引用
收藏
页码:23755 / 23762
页数:8
相关论文
共 73 条
[1]   Photoluminescence of anatase and rutile TiO2 particles [J].
Abazovic, Nadica D. ;
Comor, Mirjana I. ;
Dramicanin, Miroslav D. ;
Jovanovic, Dragana J. ;
Ahrenkiel, S. Phillip ;
Nedeljkovic, Jovan M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) :25366-25370
[2]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[3]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[4]   Modeling the structure and electronic properties of TiO2 nanoparticles [J].
Barnard, A. S. ;
Erdin, S. ;
Lin, Y. ;
Zapol, P. ;
Halley, J. W. .
PHYSICAL REVIEW B, 2006, 73 (20)
[5]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[6]   Mind the gap! [J].
Bredas, Jean-Luc .
MATERIALS HORIZONS, 2014, 1 (01) :17-19
[7]   STRUCTURAL ELECTRONIC RELATIONSHIPS IN INORGANIC SOLIDS - POWDER NEUTRON-DIFFRACTION STUDIES OF THE RUTILE AND ANATASE POLYMORPHS OF TITANIUM-DIOXIDE AT 15 AND 295-K [J].
BURDETT, JK ;
HUGHBANKS, T ;
MILLER, GJ ;
RICHARDSON, JW ;
SMITH, JV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (12) :3639-3646
[8]   Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO2 Nanoparticles [J].
Cho, Daeheum ;
Ko, Kyoung Chul ;
Lamiel-Garcia, Oriol ;
Bromley, Stefan T. ;
Lee, Jin Yong ;
Illas, Francesc .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (08) :3751-3763
[9]   Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods [J].
Chun, WJ ;
Ishikawa, A ;
Fujisawa, H ;
Takata, T ;
Kondo, JN ;
Hara, M ;
Kawai, M ;
Matsumoto, Y ;
Domen, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (08) :1798-1803
[10]   Density functional theory for transition metals and transition metal chemistry [J].
Cramer, Christopher J. ;
Truhlar, Donald G. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (46) :10757-10816