The Ginzburg-Landau theory in application

被引:79
作者
Milosevic, M. V. [1 ]
Geurts, R. [1 ]
机构
[1] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2010年 / 470卷 / 19期
关键词
Ginzburg-Landau; Mass anisotropy; Two-gap superconductors; Josephson coupling;
D O I
10.1016/j.physc.2010.02.056
中图分类号
O59 [应用物理学];
学科分类号
摘要
A numerical approach to Ginzburg-Landau (GL) theory is demonstrated and we review its applications to several examples of current interest in the research on superconductivity. This analysis also shows the applicability of the two-dimensional approach to thin superconductors and the re-defined effective GL parameter kappa. For two-gap superconductors, the conveniently written GL equations directly show that the magnetic behavior of the sample depends not just on the GL parameter of two bands, but also on the ratio of respective coherence lengths. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:791 / 795
页数:5
相关论文
共 50 条
  • [31] Ginzburg-Landau model of a Stiffnessometer - A superconducting stiffness meter device
    Gavish, Nir
    Kenneth, Oded
    Keren, Amit
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 415
  • [32] DYNAMICS OF GINZBURG-LANDAU AND GROSS-PITAEVSKII VORTICES ON MANIFOLDS
    Chen, Ko-Shin
    Sternberg, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) : 1905 - 1931
  • [33] Two-dimensional structures in the quintic Ginzburg-Landau equation
    Berard, Florent
    Vandamme, Charles-Julien
    Mancas, Stefan C.
    NONLINEAR DYNAMICS, 2015, 81 (03) : 1413 - 1433
  • [34] A note on the time-dependent Ginzburg-Landau model for superconductivity in Rn
    Fan, Jishan
    Zhou, Yong
    APPLIED MATHEMATICS LETTERS, 2020, 103
  • [35] THIN FILM LIMITS FOR GINZBURG-LANDAU WITH STRONG APPLIED MAGNETIC FIELDS
    Alama, Stan
    Bronsard, Lia
    Galvao-Sousa, Bernardo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) : 97 - 124
  • [36] MOTION OF VORTICES FOR THE EXTRINSIC GINZBURG-LANDAU FLOW FOR VECTOR FIELDS ON SURFACES
    Canevari, Giacomo
    Segatti, Antonio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08): : 2087 - 2116
  • [37] Stable large-scale solver for Ginzburg-Landau equations for superconductors
    Sadovskyy, I. A.
    Koshelev, A. E.
    Phillips, C. L.
    Karpeyev, D. A.
    Glatz, A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 : 639 - 654
  • [38] Inhomogeneous Ginzburg-Landau Parameter in a 2D Mesoscopic Superconductor
    Aguirre, C. A.
    Achic, H. B.
    Barba-Ortega, J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2019, 195 (1-2) : 124 - 137
  • [39] IMPROVED LOWER BOUNDS FOR GINZBURG-LANDAU ENERGIES VIA MASS DISPLACEMENT
    Sandier, Etienne
    Serfaty, Sylvia
    ANALYSIS & PDE, 2011, 4 (05): : 757 - 795
  • [40] The OpenCL solver for Ginzburg-Landau equations modified for nonsmooth vortex problems
    Kartsev, Petr F.
    IWOCL'18: PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON OPENCL, 2018, : 87 - 88