Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding

被引:15
作者
Lai, Hong [1 ]
Zhang, Jun [2 ]
Luo, Ming-Xing [3 ]
Pan, Lei [2 ]
Pieprzyk, Josef [4 ,5 ]
Xiao, Fuyuan [1 ]
Orgun, Mehmet A. [6 ,7 ]
机构
[1] Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China
[2] Deakin Univ, Sch Informat Technol, Geelong, Vic 3220, Australia
[3] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 610031, Peoples R China
[4] Queensland Univ Technol, Sch EE&CS, Brisbane, Qld, Australia
[5] Polish Acad Sci, Inst Comp Sci, Warsaw, Poland
[6] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
[7] Macau Univ Sci & Technol, Fac Informat Technol, Ave Wai Long, Taipa 999078, Macau, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT;
D O I
10.1038/srep31350
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.
引用
收藏
页数:12
相关论文
共 37 条
  • [1] Bennett C.H., 1984, PROC IEEE INT C COMP, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [2] Blakley GR, 1979, P NAT COMP C, P313, DOI 10.1109/MARK.1979.8817296
  • [3] Chor B., 1985, P 26 IEEE S FDN COMP, P383
  • [4] How to share a quantum secret
    Cleve, R
    Gottesman, D
    Lo, HK
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (03) : 648 - 651
  • [5] Circular quantum secret sharing
    Deng, Fu-Guo
    Zhou, Hong-Yu
    Long, Gui Lu
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (45): : 14089 - 14099
  • [6] Edmonds J., 1971, MATH PROGRAM, V1, P126
  • [7] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [8] Feldman P., 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), P427
  • [9] Reducing the Quantum Communication Cost of Quantum Secret Sharing
    Fortescue, Ben
    Gour, Gilad
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (10) : 6659 - 6666
  • [10] Robust universal complete codes for transmission and compression
    Fraenkel, AS
    Klein, ST
    [J]. DISCRETE APPLIED MATHEMATICS, 1996, 64 (01) : 31 - 55