A Maximum Principle for Optimal Control of Discrete-Time Stochastic Systems With Multiplicative Noise

被引:48
作者
Lin, Xiangyun [1 ]
Zhang, Weihai [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
关键词
Backward stochastic difference equations; discrete-time stochastic systems; maximum principle; DIFFERENTIAL-EQUATIONS;
D O I
10.1109/TAC.2014.2345243
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The maximum principle (MP) for the discrete-time stochastic optimal control problems is proved. It is shown that the adjoint equations of the MP are a pair of backward stochastic difference equations.
引用
收藏
页码:1121 / 1126
页数:6
相关论文
共 15 条
[1]   INTRODUCTORY APPROACH TO DUALITY IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
SIAM REVIEW, 1978, 20 (01) :62-78
[2]   MAXIMUM PRINCIPLE FOR A CLASS OF DISCRETE DYNAMICAL-SYSTEMS WITH LAGS [J].
BURDET, CA ;
SETHI, SP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 19 (03) :445-454
[3]  
Halkin H., 1966, SIAM J. Control, V4, P90, DOI [DOI 10.1137/0304009, 10.1137/0304009]
[4]  
Kushner Harold., 1964, J. Math. Anal. Appl, V8, P287, DOI DOI 10.1016/0022-247X(64)90070-8
[5]   NECESSARY CONDITIONS FOR CONTINUOUS PARAMETER STOCHASTIC OPTIMIZATION PROBLEMS [J].
KUSHNER, HJ .
SIAM JOURNAL ON CONTROL, 1972, 10 (03) :550-&
[6]   Stochastic optimization theory of backward stochastic differential equations with jumps and viscosity solutions of Hamilton-Jacobi-Bellman equations [J].
Li, Juan ;
Peng, Shige .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (04) :1776-1796
[7]   A GENERAL STOCHASTIC MAXIMUM PRINCIPLE FOR OPTIMAL-CONTROL PROBLEMS [J].
PENG, SG .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (04) :966-979
[8]   Fully coupled forward-backward stochastic differential equations and applications to optimal control [J].
Peng, SG ;
Wu, Z .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (03) :825-843
[9]   Discrete-time indefinite LQ control with state and control dependent noises [J].
Rami, MA ;
Chen, X ;
Zhou, XY .
JOURNAL OF GLOBAL OPTIMIZATION, 2002, 23 (3-4) :245-265
[10]   A MATHEMATICAL THEORY OF SAVING [J].
Ramsey, F. P. .
ECONOMIC JOURNAL, 1928, 38 (152) :543-559