On a generalized Kadomtsev-Petviashvili equation with variable coefficients via symbolic computation

被引:40
作者
Li, Li-Li
Tian, Bo
Zhang, Chun-Yi
Xu, Tao
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Opt Commun & Lightwave Technol, Beijing 100876, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100083, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100083, Peoples R China
[5] Meteorol Ctr Air Force Command Post, Changchun 130051, Peoples R China
关键词
D O I
10.1088/0031-8949/76/5/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considering the inhomogeneities of media, a generalized Kadomtsev - Petviashvili equation with time-dependent coefficients is hereby investigated with the aid of symbolic computation. The exact analytic one- and two-soliton solutions under certain constraints are obtained by employing the variable-coefficient balancing-act method and Hirota method. Based on its bilinear form, the Lax pair, auto-B cklund transformation (in both the bilinear form and the Lax pair form) and nonlinear superposition formula for such an equation are presented. Moreover, some figures are plotted to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.
引用
收藏
页码:411 / 417
页数:7
相关论文
共 55 条
[1]  
Ablowitz M., 1991, SOLITONS NONLINEAR E, V149, DOI 10.1017/CBO9780511623998
[2]  
Anders I, 2000, J NONLINEAR MATH PHY, V7, P284, DOI 10.2991/jnmp.2000.7.3.3
[3]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[4]   PAINLEVE ANALYSIS AND THE COMPLETE-INTEGRABILITY OF A GENERALIZED VARIABLE-COEFFICIENT KADOMTSEV-PETVIASHVILI EQUATION [J].
CLARKSON, PA .
IMA JOURNAL OF APPLIED MATHEMATICS, 1990, 44 (01) :27-53
[5]   Nonlinear dynamics of vortices in ultraclean type-II superconductors: Integrable wave equations in cylindrical geometry [J].
Coffey, MW .
PHYSICAL REVIEW B, 1996, 54 (02) :1279-1285
[6]   Response to "Comment on 'A new mathematical approach for finding the solitary waves in dusty plasma'" [Phys. Plasmas 6, 4392 (1999)] [J].
Das, GC ;
Sarma, J .
PHYSICS OF PLASMAS, 1999, 6 (11) :4394-4397
[7]   Acoustic mode in a two-ion-temperature warm dusty plasma under the weakly transverse perturbations [J].
Duan, WS .
CHAOS SOLITONS & FRACTALS, 2002, 14 (08) :1315-1318
[8]  
EMMANUEL Y, 2006, PHYS LETT A, V349, P212
[9]   Reply to: "Comment on: 'Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation'" [Phys. Lett. A 361 (2007) 520] [J].
Gao, Yi-Tian ;
Tian, Bo .
PHYSICS LETTERS A, 2007, 361 (06) :523-528
[10]   On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations [J].
Gao, Yi-Tian ;
Tian, Bo .
EPL, 2007, 77 (01)