Independent transversals in locally sparse graphs

被引:18
作者
Loh, Po-Shen [1 ]
Sudakov, Benny
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Inst Adv Study, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
independent transversals; cooperative coloring; list coloring;
D O I
10.1016/j.jctb.2007.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with maximum degree A whose vertex set is partitioned into parts V(G) V-1 U center dot center dot center dot U V-r. A transversal is a subset of V(G) containing exactly one vertex from each part V-i. If it is also an independent set, then we call it an independent transversal. The local degree of G is the maximum number of neighbors of a vertex v in a part V-i, taken over all choices of V-i and v is not an element of V-i. We prove that for every fixed epsilon > 0, if all part sizes vertical bar V-i vertical bar >= (1 + epsilon)Delta and the local degree of G is o(Delta), then G has an independent transversal for sufficiently large Delta. This extends several previous results and settles (in a stronger form) a conjecture of Aharoni and Holzman. We then generalize this result to transversals that induce no cliques of size s. (Note that independent transversals correspond to s = 2.) In that context, we prove that parts of size vertical bar V-i vertical bar >=(1 +epsilon) and local degree o(Delta) guarantee the existence of such a transversal, and we provide a construction that shows this is asymptotically tight. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:904 / 918
页数:15
相关论文
共 21 条
[1]  
AHARONI R, IN PRESS COMBINATORC
[2]  
AHARONI R, 2005, COMMUNICATION
[3]   THE LINEAR ARBORICITY OF GRAPHS [J].
ALON, N .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 62 (03) :311-325
[4]   Problems and results in extremal combinatorics - I [J].
Alon, N .
DISCRETE MATHEMATICS, 2003, 273 (1-3) :31-53
[5]   THE STRONG CHROMATIC NUMBER OF A GRAPH [J].
ALON, N .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (01) :1-7
[6]  
Alon N., 2004, The probabilistic method
[7]   On a list coloring conjecture of Reed [J].
Bohman, T ;
Holzman, R .
JOURNAL OF GRAPH THEORY, 2002, 41 (02) :106-109
[8]   COMPLETE SUBGRAPHS OF R-CHROMATIC GRAPHS [J].
BOLLOBAS, B ;
ERDOS, P ;
SZEMEREDI, E .
DISCRETE MATHEMATICS, 1975, 13 (02) :97-107
[9]   Odd independent transversals are odd [J].
Haxell, P ;
Szabó, T .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2) :193-211
[10]  
HAXELL P, 2005, COMMUNICATION