Intensification of heat transfer process: Improvement of shell-and-tube heat exchanger performances by means of ultrasound

被引:72
|
作者
Gondrexon, N. [1 ]
Rousselet, Y. [1 ]
Legay, M. [1 ]
Boldo, P. [2 ]
Le Person, S.
Bontemps, A.
机构
[1] INPG CNRS UJF, LEPMI, UMR 5631, F-38402 St Martin Dheres, France
[2] Univ Savoie, F-73376 Le Bourget Du Lac, France
关键词
Heat transfer; Shell-and-tube heat exchanger; Overall heat transfer coefficient; Ultrasound enhancement; ENHANCEMENT; VIBRATIONS;
D O I
10.1016/j.cep.2010.06.007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Heat transfer in the presence of a low-frequency ultrasonic field has been investigated. Experiments were performed using a home-made shell-and-tube heat exchanger. The aim of this study was to investigate the effect of ultrasound on heat exchange performed by this new type of "vibrating" heat exchanger named sonoexchanger. Comparison was then made between overall heat transfer coefficients with and without ultrasound for the same hydrodynamic configurations. It was shown that under ultrasonic conditions, the overall heat transfer coefficient can be increased from 123 to 257%. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:936 / 942
页数:7
相关论文
共 50 条
  • [1] INTENSIFICATION OF THERMAL PROCESSES IN A SHELL-AND-TUBE HEAT EXCHANGER
    Kushchev, L. A.
    Nikulin, N. Yu.
    Feoktistov, A. Yu.
    Yakovlev, E. A.
    SCIENTIFIC HERALD OF THE VORONEZH STATE UNIVERSITY OF ARCHITECTURE & CIVIL ENGINEERING CONSTRUCTION & ARCHITECTURE, 2016, (04): : 25 - 33
  • [2] Electrohydrodynamic enhancement of heat transfer in a shell-and-tube heat exchanger
    Ohadi, M.M.
    Sharaf, N.
    Nelson, D.A.
    Experimental Thermal and Fluid Science, 1991, 4 (01) : 19 - 39
  • [3] ELECTROHYDRODYNAMIC ENHANCEMENT OF HEAT TRANSFER IN A SHELL-AND-TUBE HEAT EXCHANGER
    Ohadi, M. M.
    Sharaf, N.
    Nelson, D. A.
    EXPERIMENTAL HEAT TRANSFER, 1991, 4 (01) : 19 - 39
  • [4] Research progress of heat transfer enhancement of shell-and-tube heat exchanger
    Lin, Wenzhu
    Cao, Jiahao
    Fang, Xiaoming
    Zhang, Zhengguo
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2018, 37 (04): : 1276 - 1286
  • [5] An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger
    Wang, Simin
    Wen, Jian
    Li, Yanzhong
    APPLIED THERMAL ENGINEERING, 2009, 29 (11-12) : 2433 - 2438
  • [6] Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger
    Legay, M.
    Simony, B.
    Boldo, P.
    Gondrexon, N.
    Le Person, S.
    Bontemps, A.
    ULTRASONICS SONOCHEMISTRY, 2012, 19 (06) : 1194 - 1200
  • [7] Investigation on heat transfer characteristics of molten salt in a shell-and-tube heat exchanger
    Du, Bao-Cun
    He, Ya-Ling
    Qiu, Yu
    Liang, Qi
    Zhou, Yi-Peng
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2018, 96 : 61 - 68
  • [8] Effectiveness improvement and optimization of shell-and-tube heat exchanger with entransy method
    Mahmood Chahartaghi
    Pouya Eslami
    Alireza Naminezhad
    Heat and Mass Transfer, 2018, 54 : 3771 - 3784
  • [9] Effectiveness improvement and optimization of shell-and-tube heat exchanger with entransy method
    Chahartaghi, Mahmood
    Eslami, Pouya
    Naminezhad, Alireza
    HEAT AND MASS TRANSFER, 2018, 54 (12) : 3771 - 3784
  • [10] Convective heat transfer of molten salt in the shell-and-tube heat exchanger with segmental baffles
    Du, Bao-Cun
    He, Ya-Ling
    Wang, Kun
    Zhu, Han-Hui
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 113 : 456 - 465