State space realizations and monomial equivalence for convolutional codes

被引:11
作者
Gluesing-Luerssen, Heide
Schneider, Gert
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
关键词
convolutional codes; minimal realizations; weight adjacency matrix; monomial equivalence; SYSTEMS;
D O I
10.1016/j.laa.2007.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We will study convolutional codes with the help of state space realizations. It will be shown that two such minimal realizations belong to the same code if and only if they are equivalent under the full state feedback group. This result will be used in order to prove that two codes with positive Forney indices are monornially equivalent if and only if they share the same adjacency matrix. The adjacency matrix is an invariant of the code obtained via a minimal state space realization and counts in a detailed way the weights of all possible outputs. It contains full information about the weights of the codewords in the given code. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:518 / 533
页数:16
相关论文
共 28 条
[1]   On the equivalence of codes over rings and modules [J].
Dinh, HQ ;
López-Permouth, SR .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (04) :615-625
[2]  
FORNEY GD, 1975, SIAM J CONTROL, V13, P493, DOI 10.1137/0313029
[3]  
Fuhrmann P. A., 1981, LINEAR SYSTEMS OPERA
[4]   On the weight distribution of convolutional codes [J].
Gluesing-Luerssen, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 :298-326
[5]  
GLUESINGLUERSSE.H, UNPUB MACWILLIAMS ID
[6]   Finite-ring combinatorics and MacWilliams' equivalence theorem [J].
Greferath, M ;
Schmidt, SE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (01) :17-28
[7]   Woven convolutional codes I:: Encoder properties [J].
Höst, S ;
Johannesson, R ;
Zyablov, VV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (01) :149-161
[8]   Convolutional codes with maximum distance profile [J].
Hutchinson, R ;
Rosenthal, J ;
Smarandache, R .
SYSTEMS & CONTROL LETTERS, 2005, 54 (01) :53-63
[9]  
Johannesson R., 2015, Fundamentals of Convolutional Coding
[10]   QUASI-CYCLIC UNIT MEMORY CONVOLUTIONAL-CODES [J].
JUSTESEN, J ;
PAASKE, E ;
BALLAN, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :540-547