An Involutive GVW Algorithm and the Computation of Pommaret Bases

被引:0
作者
Hashemi, Amir [1 ]
Izgin, Thomas [2 ]
Robertz, Daniel [3 ]
Seiler, Werner M. [2 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[2] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Plymouth, Sch Engn Comp & Math, 2-5 Kirkby Pl, Plymouth PL4 8AA, Devon, England
关键词
Grobner bases; Module of syzygies; Signature-based algorithms; The GVW algorithm; Involutive bases; Quasi-stable position; Linear coordinate transformations; Pommaret bases;
D O I
10.1007/s11786-021-00512-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The GVW algorithm computes simultaneously Grobner bases of a given ideal and of the syzygy module of the given generating set. In this work, we discuss an extension of it to involutive bases. Pommaret bases play here a special role in several respects. We distinguish between a fully involutive GVW algorithm which determines involutive bases for both the given ideal and the syzygy module and a semi-involutive version which computes for the syzygy module only an ordinary Grobner basis. A prototype implementation of the developed algorithms in Maple is described.
引用
收藏
页码:419 / 452
页数:34
相关论文
共 50 条
[21]   Toward involutive bases over effective rings [J].
Ceria, Michela ;
Mora, Teo .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2020, 31 (5-6) :359-387
[22]   Complementary decompositions of monomial ideals and involutive bases [J].
Hashemi, Amir ;
Orth, Matthias ;
Seiler, Werner M. .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (06) :791-821
[23]   Complementary decompositions of monomial ideals and involutive bases [J].
Amir Hashemi ;
Matthias Orth ;
Werner M. Seiler .
Applicable Algebra in Engineering, Communication and Computing, 2022, 33 :791-821
[24]   Speeding Up the GVW Algorithm via a Substituting Method [J].
Li Ting ;
Sun Yao ;
Huang Zhenyu ;
Wang Dingkang ;
Lin Dongdai .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (01) :205-233
[25]   Relative Gröbner and Involutive Bases for Ideals in Quotient Rings [J].
Amir Hashemi ;
Matthias Orth ;
Werner M. Seiler .
Mathematics in Computer Science, 2021, 15 :453-482
[26]   A combinatorial approach to involution and δ-regularity II: structure analysis of polynomial modules with pommaret bases [J].
Seiler, Werner M. .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2009, 20 (3-4) :261-338
[27]   A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable type [J].
Seiler, Werner M. .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2009, 20 (3-4) :207-259
[28]   On the computation of parametric Grobner bases for modules and syzygies [J].
Nabeshima, Katsusuke .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2010, 27 (02) :217-238
[29]   On the finiteness of Grobner bases computation in quotients of the free algebra [J].
Nordbeck, P .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2001, 11 (03) :157-180
[30]   Computation of Macaulay constants and degree bounds for Grobner bases [J].
Hashemi, Amir ;
Parnian, Hossein ;
Seiler, Werner M. .
JOURNAL OF SYMBOLIC COMPUTATION, 2022, 111 :44-60