Some basic geometric properties of a subclass of harmonic mappings

被引:5
作者
Cakmak, Serkan [1 ]
Yasar, Elif [1 ]
Yalcin, Sibel [1 ]
机构
[1] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkey
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2022年 / 28卷 / 02期
关键词
Harmonic; Univalent; Convolution; SECTIONS;
D O I
10.1007/s40590-022-00448-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, a new subclass of complex-valued harmonic functions in the open unit disk is introduced and coefficient bounds, growth estimates, radius of univalency, radius of starlikeness and radius of convexity of this class are investigated. In addition, it is shown that this class is closed under convolution of its members.
引用
收藏
页数:13
相关论文
共 13 条
[1]  
CHICHRA PN, 1977, P AM MATH SOC, V62, P37
[2]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[3]  
DUREN P., 2004, HARMONIC MAPPINGS PL
[4]  
Fejer L., 1925, Acta Litt. Ac Sci. Szeged, P75
[5]  
Goodloe M., 2002, Complex. Var. Theory Appl, V47, P81, DOI DOI 10.1080/02781070290010841
[6]   Stable geometric properties of analytic and harmonic functions [J].
Hernandez, Rodrigo ;
Martin, Maria J. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2013, 155 (02) :343-359
[7]   Disk of convexity of sections of univalent harmonic functions [J].
Li, Liulan ;
Ponnusamy, Saminathan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) :589-596
[8]   Injectivity of sections of univalent harmonic mappings [J].
Li, Liulan ;
Ponnusamy, Saminathan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 89 :276-283
[9]   Geometric properties and sections for certain subclasses of harmonic mappings [J].
Liu, Ming-Sheng ;
Yang, Li-Mei .
MONATSHEFTE FUR MATHEMATIK, 2019, 190 (02) :353-387
[10]   Variability regions for certain families of harmonic univalent mappings [J].
Ponnusamy, S. ;
Yamamoto, H. ;
Yanagihara, H. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (01) :23-34