Overexpression of TGR5 alleviates myocardial ischemia/reperfusion injury via AKT/GSK-3β mediated inflammation and mitochondrial pathway

被引:24
|
作者
Li, Junzhi [1 ]
Cheng, Ruining [2 ]
Wan, Hong [3 ]
机构
[1] Ninth Hosp Xian, Dept Emergency, Xian 710054, Shaanxi, Peoples R China
[2] Ninth Hosp Xian, Dept Geriatr 1, Xian 710054, Shaanxi, Peoples R China
[3] TCM Encephalopathy Hosp Xian, Dept Emergency, Xian 710032, Shaanxi, Peoples R China
关键词
ISCHEMIA-REPERFUSION INJURY; BILE-ACID RECEPTOR; NF-KAPPA-B; THERAPEUTIC TARGET; CYTOCHROME-C; GPBAR1; TGR5; INHIBITION; ACTIVATION; APOPTOSIS; DYSFUNCTION;
D O I
10.1042/BSR20193482
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ischemia/reperfusion (I/R) injury reduces cell proliferation, triggers inflammation, promotes cell apoptosis and necrosis, which are the leading reasons of morbidity and mortality in patients with cardiac disease. TGR5 is shown to express in hearts, but its functional role in I/R-induced myocardial injury is unclear. In the present study, we aimed to explore the underlying molecular mechanism of TGR5 in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro. The results showed that TGR5 was significantly up-regulated in H9C2 (rat cardiomyocyte cells) and human cardiomyocytes (HCMs) after H/R. Overexpression of TGR5 significantly improved cell proliferation, alleviated apoptosis rate, the activities of caspase-3, cleaved caspases-3 and Bax protein expression levels, and increased Bcl-2 level. Overexpression of TGR5 significantly up-regulated ROS generation, stabilized the mitochondrial membrane potential (MMP), and reduced the concentration of intracellular Ca2+ as well as cytosolic translocation of mitochondrial cytochrome c (cyto-c). Meanwhile, overexpressed TGR5 also enhanced the mRNA and protein levels of interleukin (IL)-10, and decreased the mRNA and protein levels of IL-6 and tumor necrosis factor alpha (TNF-alpha). The shTGR5+H/R group followed opposite trends. In addition, overexpressed TGR5 induced an increase in the levels of p-AKT and p-GSK-3 beta. The protective effects of TGR5 were partially reversed by AKT inhibitor MK-2206. Taken together, these results suggest that TGR5 attenuates I/R-induced mitochondrial dysfunction and cell apoptosis as well as inflammation, and these protections may through AKT/GSK-3 beta pathway.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Kaempferide Protects against Myocardial Ischemia/Reperfusion Injury through Activation of the PI3K/Akt/GSK-3β Pathway
    Wang, Dong
    Zhang, Xinjie
    Li, Defang
    Hao, Wenjin
    Meng, Fanqing
    Wang, Bo
    Han, Jichun
    Zheng, Qiusheng
    MEDIATORS OF INFLAMMATION, 2017, 2017
  • [12] Oleanolic Acid Alleviates Cerebral Ischemia/Reperfusion Injury via Regulation of the GSK-3β/HO-1 Signaling Pathway
    Lin, Kaili
    Zhang, Zhang
    Zhang, Zhu
    Zhu, Peili
    Jiang, Xiaoli
    Wang, Ying
    Deng, Qiudi
    Lam Yung, Ken Kin
    Zhang, Shiqing
    PHARMACEUTICALS, 2022, 15 (01)
  • [13] Morphine Reduces Myocardial Apoptosis in Rats with Myocardial Ischemia-Reperfusion Injury Through PI3K/Akt/GSK-3β Pathway
    Ren, Yuhua
    Liu, Yuzhi
    Yang, Yong
    Zhang, Yanmin
    Zhang, Shaoyang
    PANMINERVA MEDICA, 2020,
  • [14] MiR-21 Ameliorates Cerebral Ischemia/Reperfusion Injury via PI3K/Akt/GSK-3β Pathway
    Wang, Qian
    Zhu, Jianbing
    Zhang, Lei
    Xie, Huiying
    Wu, Chuanyong
    Liang, Xiaohui
    Xu, Shujun
    Lou, Jiatao
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 66 (16) : C236 - C236
  • [15] Progesterone alleviates hypoxic-ischemic brain injury via the Akt/GSK-3β signaling pathway
    Li, Xiaojuan
    Zhang, Junhe
    Chai, Shujie
    Wang, Xiaoyin
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2014, 8 (04) : 1241 - 1246
  • [16] Dexmedetomidine reduces myocardial ischemia-reperfusion injury in rats through PI3K/AKT/GSK-3β signaling pathway
    Zhang, Xiushuang
    Xu, Mingjun
    Che, Xiangming
    Cao, Xiuling
    Li, Xiaoguang
    MINERVA CARDIOANGIOLOGICA, 2020, 68 (01): : 58 - 59
  • [17] Paraoxonase 2 protects against acute myocardial ischemia-reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway
    Sulaiman, Dawoud
    Li, Jingyuan
    Devarajan, Asokan
    Cunningham, Christine Marie
    Li, Min
    Fishbein, Gregory A.
    Fogelman, Alan M.
    Eghbali, Mansoureh
    Reddy, Srinivasa T.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2019, 129 : 154 - 164
  • [18] Astragaloside IV alleviates myocardial ischemia-reperfusion injury in rats through regulating PI3K/AKT/GSK-3β signaling pathways
    Wei, Dajun
    Xu, Hongjie
    Gai, Xiaodong
    Jiang, Ying
    ACTA CIRURGICA BRASILEIRA, 2019, 34 (07)
  • [19] Asiaticoside alleviates cardiomyocyte apoptosis and oxidative stress in myocardial ischemia/reperfusion injury via activating the PI3K-AKT-GSK3β pathway in vivo and in vitro
    Zeng, Xueliang
    Yu, Junjian
    Liu, Peipei
    Liu, Yuan
    Zeng, Taohui
    Li, Bei
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (02)
  • [20] Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury
    Han, Mengke
    Li, Suchun
    Xie, Haixia
    Liu, Qiaojuan
    Wang, Ani
    Hu, Shan
    Zhao, Xiaoduo
    Kong, Yonglun
    Wang, Weidong
    Li, Chunling
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2021, 320 (03) : F308 - F321