Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy

被引:230
|
作者
Brika, Salah Eddine [1 ]
Letenneur, Morgan [1 ]
Dion, Christopher Alex [2 ]
Brailovski, Vladimir [1 ]
机构
[1] Ecole Technol Super, Dept Mech Engn, 1100 Notre Dame St West, Montreal, PQ H3C 1K3, Canada
[2] PyroGenesis Addit, Res & Dev, 1744 William St,Suite 200, Montreal, PQ H3J 1R4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Laser powder bed fusion; Particle size distribution; Sphericity; Ti-6Al-4V; Layer thickness; Powder flowability; FINITE-ELEMENT-ANALYSIS; LAYER; FLOW;
D O I
10.1016/j.addma.2019.100929
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) additive manufacturing technology is sensitive to variations in powder particle morphology and size distribution. However, the absence of a clear link between the powder characteristics and the LPBF performances complicates the development, selection and quality control of LPBF powder feedstock. In this work, three Ti-6Al-4 V powder lots produced by two different techniques, namely, plasma atomization and gas atomization, were selected and characterized. Following the micro-computed tomography analysis of the powder particles' morphology, size and density, the flowability of these powder lots was concurrently evaluated using Hall and Gustaysson flowmeters and an FT4 powder rheometer. Using established rheology-based criteria, a figure of merit was proposed to quantify the overall powder suitability for the LPBF process. Next, the same three powder lots were used to 3D-print and post-process a series of testing specimens with different layer thicknesses and build orientations, in order to establish a correlation between the powder characteristics and the geometric and mechanical properties of a final product. This study demonstrates that the use of highly spherical powders with a limited amount of fine particles promotes their flowability and yields LPBF components with improved mechanical and geometric characteristics.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The Effect of Laser Powder Bed Fusion Process on Ti-6Al-4V Powder
    Memu, Firat
    Durlu, Nuri
    Yagmur, Aydin
    JOM, 2025,
  • [2] Microstructural Development of Ti-6Al-4V Alloy via Powder Metallurgy and Laser Powder Bed Fusion
    Baghi, Alireza Dareh
    Nafisi, Shahrooz
    Ebendorff-Heidepriem, Heike
    Ghomashchi, Reza
    METALS, 2022, 12 (09)
  • [3] A study on surface morphology and tension in laser powder bed fusion of Ti-6Al-4V
    Khorasani, Mahyar
    Ghasemi, AmirHossein
    Awan, Umar Shafique
    Hadavi, Elahe
    Leary, Martin
    Brandt, Milan
    Littlefair, Guy
    O'Neil, William
    Gibson, Ian
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 111 (9-10): : 2891 - 2909
  • [4] A study on surface morphology and tension in laser powder bed fusion of Ti-6Al-4V
    Mahyar Khorasani
    AmirHossein Ghasemi
    Umar Shafique Awan
    Elahe Hadavi
    Martin Leary
    Milan Brandt
    Guy Littlefair
    William O’Neil
    Ian Gibson
    The International Journal of Advanced Manufacturing Technology, 2020, 111 : 2891 - 2909
  • [5] Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion
    Xing, Lei-Lei
    Zhang, Wen-Jing
    Zhao, Cong-Cong
    Gao, Wen-Qiang
    Shen, Zhi-Jian
    Liu, Wei
    MATERIALS, 2021, 14 (09)
  • [6] Manufacturability of Ti-6Al-4V Hollow-Walled Lattice Struts by Laser Powder Bed Fusion
    J. Noronha
    M. Qian
    M. Leary
    E. Kyriakou
    S. Brudler
    M. Brandt
    JOM, 2021, 73 : 4199 - 4208
  • [7] Influence of Powder Particle Morphology on the Static and Fatigue Properties of Laser Powder Bed-Fused Ti-6Al-4V Components
    Brika, Salah Eddine
    Brailovski, Vladimir
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2020, 4 (04):
  • [8] Process variation in Laser Powder Bed Fusion of Ti-6Al-4V
    Chen, Zhuoer
    Wu, Xinhua
    Davies, Chris H. J.
    ADDITIVE MANUFACTURING, 2021, 41
  • [9] Precipitation hardening of laser powder bed fusion Ti-6Al-4V
    Derimow, Nicholas
    Benzing, Jake T.
    Garcia, Jacob
    Levin, Zachary S.
    Lu, Ping
    Moser, Newell
    Beamer, Chad
    Delrio, Frank W.
    Hrabe, Nik
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 921
  • [10] Thermal Conductivity of Ti-6Al-4V in Laser Powder Bed Fusion
    Bartsch, Katharina
    Bossen, Bastian
    Chaudhary, Waqar
    Landry, Michael
    Herzog, Dirk
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2022, 8